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Abstract: Massive multiple input multiple output (MIMO) is one of the key technologies of the fifth genera-
tion (5thGeneration, 5G) mobile communication network. In a massive MIMO system, precoding processing 
technology can not only effectively eliminate multi-user interference, greatly increasing the system capacity, 
but also simplify the receiver design and solve the problem of power consumption and volume at the user-side 
[1].Minimum mean square error (MMSE) precoding requires matrix inversion, which leads to high computa-
tional complexity [2-4].This paper analyzes the biased MMSE precoding that pre-processes the transmission 
signal through a simplified iterative way, including jacobi method (JM)[5], conjugate gradient (CG)[6], neu-
mann series expansion (NS) method, this paper proposes a precoding algorithm based on gaussian belief 
propagation (GaBP). Simulation results and complexity analysis show that with low computational complexi-
ty, the bit error rate (BER) performance of the GaBP precoding algorithm is significantly better than the tradi-
tional JM, CG, and NS method, and faster convergence rate. This shows that MMSE precoding based on 
GaBP algorithm can have lower total hardware implementation complexity and latency. 
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1. Introduction 
Massive MIMO is considered to be one of the key tech-
nologies for 5G communication. The massive MIMO 
system is a base station (BS) with hundreds of antennas 
to serve many single antenna users. Compared with the 
traditional MIMO system, the massive MIMO system 
has higher spectrum efficiency and energy of the com-
munication system. 
However, massive MIMO systems be confronted with 
many challenging problems in actual use, one of which is 
to find a low-complexity and high-performance precod-
ing scheme. Since the number of antennas and the num-
ber of users are much larger than traditional MIMO sys-
tem, the use of non-linear precoding will not be possible 
due to high computational complexity. The channel ma-
trix of the massive MIMO system is orthogonal, and the 
MMSE precoding scheme can achieve near-optimal per-
formance, but the MMSE precoding scheme involves 
matrix inversion, which has high computational com-
plexity when the number of antennas is huge (O3). 
There are several methods based on secondary calcula-
tions to obtain approximate solutions for matrix inversion. 
For example, JC, CG, NS and so on. These methods have 
lower computational complexity than MMSE precoding 
to obtain an approximate solution of the matrix inverse, 
but they will reduce the BER performance. The JC and 
CG methods use an iterative calculation method, and a 
smaller number of iterations can effectively reduce the 
computational complexity, but it will reduce the BER 
performance. A large number of iterations can achieve 

good BER performance, but the computational complexi-
ty may reach or exceed the MMSE method. The CG me-
thod converges faster and has better performance than the 
JC method. The NS method uses series expansion to re-
duce the computational complexity of matrix inversion, 
and the BER performance is poor. This paper proposes a 
low-complexity precoding method based on GaBP. The 
channel matrix of the massive MIMO system is a sparse 
matrix, and the message between the sending node and 
the receiving node is approximately Gaussian, so the 
GaBP algorithm can be used to reduce the computational 
complexity of matrix inversion. 

2. System Model 
Wireless communication is affected by parameters such 
as time delay, frequency shift, and space correlation, re-
sulting in a very complicated signal propagation process. 
The massive MIMO system is equipped with multiple 
antennas at both the transmitting end and the receiving 
end. The simplified transmission model of the point-to-
point MIMO system is shown in Figure 1. 
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Figure 1. Simple model of massive MIMO system 
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2.1. System model 

For a single-cell multi-user downlink massive MIMO 
system, the number of base station transmitting antennas 
is M , and the number of single antenna receiving users 
is N , where M  is much larger than N . Modulate the 
original information bit stream, obtain the original signal 
vector 1Nb C ×∈ , and the precoding matrix is set to 

M NW C ×∈ . After precoding the original signal vector b, 
the expected transmission signal is 1MS C ×∈ , then the 
received signal 1Ny C ×∈ : 

y HWb n= +                                  (1) 
Where N MH C ×∈  is the downlink channel matrix, its fad-
ing is flat Rayleigh fading. n  is additive white Gaussian 
noise with a mean value of 0  and a variance of 0N . As-
sume that the base station has known channel state in-
formation, and the sub-channels are independent identi-
cally distributed, ( ) ~  0,1H CN . The signal-to-noise 
ratio of the downlink transmission is 0  /SNR M Es N= ⋅ , 
and Es  is the average energy of the transmitted signal. 
The precoding process is shown in Figure 2. 
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Figure 2. Downlink precoding system 

2.2. MMSE precoding 

According to the MMSE detection theory, the precoding 
signal can be expressed as: 

2 1( )H HWb H HH I bσ −= +                    (2) 
Where 2

0 /N Pσ = , where P  is the transmitted signal 
power. 
Convert solving the precoding signal to solving the in-
verse of the matrix: 

Ax b=                                     (3) 
Where the matrix 2HA HH Iσ= + , and HWb H x= . 
The computational complexity of solving the inverse of 
matrix A  is ( )3O N ,the increase of user N  will increase 
the computational complexity geometrically. In a mas-
sive MIMO system, the rows of the channel matrix H  
can be considered as full rank, and each row is progres-
sively orthogonal, and the matrix A  becomes a diagonal-
ly dominant Hermitian positive definite matrix. In this 
way, the problem of solving 1A−  can be transformed into 
a problem of solving a system of linear equations to re-
duce the computational complexity. 

3. Proposedscheme 

Linear equations can be represented by an undirected 
graph, such as MRF(Markov Random Fields). A  Mar-
kov random field undirected graph ( )   ,  G V E= , V  is 
the set of undirected graph nodes, E  is the set of edges, 
and the vertex elements of MRF are random variables 
independent of all other variables. 
The vertex set V  of the undirected graph G  corresponds 
to the variable set { }1 2  , ,..., T

Nx x x x=  of the linear equa-
tion   Ax b= , and the edge set E  corresponds to the non-
zero elements of the matrix A . Where N is the number of 
users of the massive MIMO system. 
In this way, from the coefficient matrix A  and vector b , 
the following Gaussian density function can be obtained: 

( ) 1~ exp( )
2

T Tp x x Ax b x− +                      (4) 

The edge potentials function ijψ  and the self potentials 
function iφ  of the undirected graph G : 

( )
{ }1 ,

( ) ( , )
N

i i ij i j
i i j

p x x x xϕ
=

∝ Ψ∏ ∏                   (5) 

Where 
1( , ) exp( )ˆ
2ij i j i ij jx x x A xψ = −                      (6) 

21( ) exp( )
2i i ij i i ix A x b xϕ = − +                      (7) 

Therefore, the GaBP algorithm transforms the problem of 
solving linear equations into a probabilistic reasoning 
problem of solving graphs, as shown in Figure 3. 
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Figure 3. Matrix inversion conversion probability reason-

ing 

The GaBP algorithm updates and iterates through the 
message exchange between nodes and the update and 
transfer of external information. The GaBP algorithm 
passes messages through edges, and is carried out by two 
calculation rules: "addition and multiplication" and "mul-
tiplication". The difference between GaBP algorithm and 
BP algorithm is that its probability density distribution 
obeys Gaussian distribution. As shown in Figure 4, it 
shows the message transfer between node i  and neighbor 
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nodes. Each node has its own potential function φ , and 
the edge between nodes has an edge potential function ψ . 
The message ijm  is propagated between nodes along the 
edge, so the message transfer only needs to calculate the 

ijm . 
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Figure 4. Message passing of node i 

Define the following symbols: edge set { },  i j  includes all 
non-zero entries of i j>  in matrix A , node set ( )N i  
represents all adjacent sets of the i  - th node (not includ-
ing i ), ( )  \  N i j  means that the node set ( )N i  does not 
contain node j . 
The BP algorithm passes messages through edges, and is 
carried out by two calculation rules: "addition and mul-
tiplication" and "multiplication". The message ( )ij jm x  
indicates that the message is transferred from the node i  
to the node j  on the same edge, and the message ( )ij jm x  
is expressed as: 

( ) ( ) ( )
( ) \

, ( )
i

ij j ij i j i i ki i ix
k N i j

m x x x x m x dxψ ϕ
∈

∝ ∏∫        (8) 

Use the "multiplication" rule to calculate the edge: 
( )

( )

( ) ( )i i ki i
k N i

p x x m xαϕ
∈

= ∏                      (9) 

Where α  is the normalization constant. 
The GaBP algorithm process can be divided into three 
parts: initialization, iteration and solving. The iteration 
part is carried out by two steps: message accumulation 
and message update. The algorithm steps are as follows: 
A. Initialization 

ˆii iiP A= ， ˆii ibµ = ； 0ijP = ， 0( )ij i jµ = ≠ ； 0kiP = ，

0kiµ =  
B. Iteration 
Message accumulation: 

( )
i ii ki

k N i
P P P

∈

= + ∑ ，
( )

i ii ki
k N i

µ µ µ
∈

= + ∑  

Message update: 
\i j i jiP P P= − ， \i j i jiµ µ µ= −  

2 1
\ij ij i jP A P−= − ， 1

\ \ij i j ij i jP Aµ µ−= −  
C. Solve 

/i i ix Pµ= 

  

4. Numericalresults 
In this section, we consider a downlink massive MIMO 
system with 128 BS antennas and 16 single antenna users. 
We consider the 64-QAM modulation scheme without 
channelcoding. Suppose H  is already known for the BS 
and its elements are independent identically distributed 
with 0  mean unit variance. The SNR  of the downlink 
transmission is 0  /sSNR M E N= ⋅ . 

4.1. BER Performance 

The simulation in this section will be divided into two 
cases for comparative analysis: the first case analyzes the 
performance and convergence speed of the GaBP algo-
rithm; the second case analyzes and compares the per-
formance of the GaBP algorithm with other sub-optimal 
precoding algorithms. 
A. Compare the BER performance of the GaBP algo-
rithm with different iteration times 
Figure 5 shows the BER performance of GaBP algorithm 
under MMSE precoding. The number of iterations is two 
to five. It can be seen from the figure that the GaBP algo-
rithm has poor convergence in the case of two iterations; 
in three iterations, its BER performance can reach 3×10-4 
at 18dB, but its performance is far from MMSE precod-
ing. Obviously; the BER performance of the fourth itera-
tion can reach 5×10-5 at 18dB;the fifth iteration of the 
GaBP algorithm achieves approximate convergence, and 
its performance is only 1dB worse than that of the 
MMSE algorithm. However, using the GaBP algorithm 
to perform sub-optimal precoding can reduce the com-
plexity of MMSE precoding ( )3О N  to ( )2О N , and can 
achieve similar MMSE precoding performance after mul-
tiple iterations. 
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Figure 5. GaBP precoding with different iteration times K 
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Figure 6. Compared with other traditional methods com-

pared with other traditional methods 

In Figure 6, the number of iterations   2K = , it can be 
seen that the BER performance of the GaBP algorithm is 
better than that of the CG, JM, and NS methods, which 
shows that the GaBP precoding has better BER perfor-
mance when the number of iterations is low. When the 
number of iterations   3K = , the BER performance of 
the GaBP algorithm is much better than that of the JM 
and NS method. When the SNR is less than 17, the BER 
performance of GaBP is better than that of the CG me-
thod. When the SNR is greater than 17, the BER perfor-
mance of GaBP is better than that of CG. The method is 
slightly worse. In short, the precoding performance of the 

GaBP algorithm is better than most traditional methods, 
and it also has faster convergence and lower BER per-
formance. It can achieve performance close to MMSE 
precoding. 

4.2. Computational complexity 

The computational complexity of the algorithm can be 
evaluated according to the number of adders, multipliers 
and dividers used [6]. In MMSE precoding, the main 
computational complexity overhead lies in the multiplier, 
so this paper uses the number of real multipliers to eva-
luate the complexity of the algorithm. MMSE precoding 
itself needs to calculate 2  HA HH Iσ= + , and other sub-
optimal precoding algorithms also need to calculate ma-
trix A , so the complexity of this part of the calculation is 
ignored in the comparison, and only the direct inversion 
of MMSE precoding is compared with other algorithms. 
The complexity of the comparison. Where K  represents 
the number of iterations of the algorithm. 
As shown in Figure 7, the computational complexity of 
the JM, GaBP, and CG methods are far lower than that of 
the MMSE method, and the computational complexity of 
the NS method is higher than that of the MMSE method 
when K  is greater than 3. 
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Figure 7. Computational complexity comparison 
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