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Abstract: In this paper, we mainly resort out some results of spectral decomposition and star complements of 
Randić matrix of a graph. Additionally, we give a relation between spectral decomposition and star comple-
ments of Randić matrix of a graph, and some further consideration. 
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1. Introduction 
A graph G  considered here is simple, finite and undi-
rected. Denote by 1( ) { , , }nV G v v=  the vertex set, ( )E G  
the edge set. The adjacency matrix of G is a n n×  matrix 
A whose ( , )i j -entry is 1 if  iv  is adjacent to jv , and 

0 otherwise. The degree of iv , denoted by id , is the 
number of edges that incident to iv . The Randić matrix 
(short for R -matrix) of a graph G  is a symmetric matrix 

( )ijR r=  whose ( , )i j -entry is equal to 1 i jd d  if iv  is 
adjacent to jv , and 0  otherwise. The R -eigenvalues of a 
graph G  are the eigenvalues of its Randić matrix R . 
One can refer to [2] and [3] for more details about Randić 
matrix and R -eigenvalues.  
In this paper, we give the spectral decomposition of the 
Randić matrix of graphs,  and parallel explant the star set 
and star complements to the R -eigenvalues. Along with 
some related results of adjacency eigenvalues, we proof 
the properties of R -star set and R -star complements of a 
graph G . Finally, we give a relation between spectral 
decomposition and star complements of Randić matrix of 
G , and some further consideration. 

2. The Spectral Decomposition of Randić 
Matrix 
Let 1 2, , , ne e e  be the standard orthonormal basis of nR . 
For a graph G , let R  be the Randić matrix of G , and 

1 2 mρ ρ ρ> > >  all the distinct eigenvalues of R . Since 
R  is a real symmetric matrix of G, then there exists an 
orthogonal matrix U such that 
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For a fixed i, if eigenspace ( )iε ρ has an orthonormal ba-
sis 1 2, , ,
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Furthermore, 
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Thus, we have following result. 

2.1. Let R  be the Randić matrix of a graph G , then 
R  has the spectral decomposition 

1 1 2 2 m mR U U Uρ ρ ρ= + + +                (4) 
For 1, ,i m=  , 
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where 1 2, , ,
ii i iky y y are the orthonormal basis of ( )iε ρ . 

Moreover,  
1

m
T

i
i

U UIU I
=

= =∑ , and 2 T
i i iU U U= = , 

1, ,i m=  . 
It is straightforward to verify the following result. 
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2.2. For any polynomial 
1

1 1( ) n n
n nf x x a x a x a−
−= + + + + , we have 

1
1 1( ) n n

n nf R R a R a R a I−
−= + + + +               (6) 

1 1
1 1 1 1 1 1 1 1( ) ( ) ( )n n n n

m m m m n m m nU U a U U a U U a Iρ ρ ρ ρ ρ ρ− −
−= + + + + + + + + + +   

     (7) 

1 1( ) ( )m mf U f Uρ ρ= + +             (8) 
In particular, ( )i iU f R= is a polynomial in R for each i , 
i.e., ( ) ( ) ( )i s i s

s i s i

f x x ρ ρ ρ
≠ ≠

= − −∏ ∏ . 

3. R  -Sta Set and R  -StarComplements 
Let G be a graph with vertex set 1( ) { , , }nV G v v=  and 
Randić matrix R , S be a subset of ( )V G  such that 

( )S V G< . The matrix SR is defined as the principal 
submatrix of R  corresponding to the rows and columns 
in S . 
Let 1 2, , , ne e e be the standard orthonormal basis of 

nR and E the matrix which represents the orthogonal 
project of nR onto the eigenspace ( )ε ρ of R with respect 
to 1 2, , , ne e e . Since ( )ε ρ  is spanned by the vectors jE eρ  
( 1,2, , )j n=  , there exists ( )X V G⊆ such that the vectors 

jE eρ  ( j X∈ ) form a basis for ( )ε ρ . Such a subset X of 
( )V G  is called a star set for ρ  in G .  

If X is a star set for ρ  in G , then H G X= − is called a 
star complement for ρ , and ( ) ( )X V H V G X= = − . 
Proposition 3.1. Let G  be a graph with ρ as a R -
eigenvalue of multiplicity k > 0. Then following condi-
tions on a subset X of ( )V G  are equivalent: 
X is a star for ρ ; 

0( )nR ε ρ ε= ⊕ ,  where 0 :ie i Xε =< ∉ > ; 
X k= and ρ  is not an eigenvalue of  XR . 

Proposition 3.2. Let 1( ) { , , }nV G v v=  , and R be the 
Randić matrix of G . Let Eρ  be defined as above. Then 
the subset X of ( )V G  is a star set for ρ in G if and only if 
the vectors iE eρ ( )i X∈  form a basis for ( )Rε ρ . Further-
more, the matrix Eρ  is a polynomial function of R , and 
we have 

~

1Rev v v i
i v i v

E e RE e E E e
d dρ ρ ρ ρρ = = = ∑           (9) 

where the summation goes over all vertices that adjacent 
to vertex v . 
Proposition 3.3. Let ρ be a non-zero eigenvalue of 
Randić matrix R of a connected graph G, and let 

( )K V G⊂ be a subset such that KG be a connected in-
duced subgraph of G. If KR does not have ρ as a Randić 

eigenvalue, then G has a connected star complement for 
ρ containing K . 
Theorem 3.1. Let X be a set of k vertices in the graph G 
and suppose that G has Randić matrix 
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, where XR  and XR  are defined as above. 

Then X is a star set for ρ in G if and only if ρ is not an 
eigenvalue of XR  and 1( )T

X n k XI R B I R Bρ ρ −
−− = − . 

Proof. Suppose first that X is a star set for ρ . Then ρ  is 
not an eigenvalue of XR  from Proposition 3.1, and we 
have 

T
X

X

I R B
I R

B I R
ρ

ρ
ρ

 − −
− =   − − 

                (10) 

where XI Rρ −  is invertible. In particular, if ( )V G n= , 

then the matrix ( )XB I Rρ− −  has rank n k− ; but 

I Rρ − also has rank n k− , so the rows of ( )XB I Rρ− −  
form a basis for the row space of I Rρ − . Hence there 
exists a k × (n − k) matrix L such that 

( ) ( )T
X XI R B L B I Rρ ρ− − = − −                    (11) 

Now XI Rρ −  = −LB, −BT = L( XI Rρ − ) and the equa-
tion follows by eliminating L. 
Conversely, if ρ  is not an eigenvalue of XR  , then 

( )Xrank I R n kρ − = − , and ( )rank I Rρ −  
n k≥ − , that is dim ( )R kε ρ ≤ . Let { }\ 0K

KY R∈ , since 
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then there are at least k linear independent vectors 

1( )
K

KX

Y
I R BYρ −
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 form the eigenvectors of ρ  

in G, and dim ( )R kε ρ ≥ . Thus dim ( )R kε ρ = , X is a star 
set for ρ  
in G from Proposition 3.1. 
 
Theorem 3.2. If X is a star set for ρ in G and 

( )X V G X= − , if 0ρ ≠ or 1

ud
−  or 1

vd
− , where ,u v are two 

vertices with same degree in X , then the X -
neighbourhoods of vertices in X are non-empty and dis-
tinct. 
Proof. From Proposition 3.2 we have 

~

1
u i

i u i u

E e E e
d dρ ρρ = ∑ . We know from this equation that 

the vectors in { }{ } : ~u iE e E e i uρ ρ  are linear dependent. 
Since the vectors jE eρ  ( )j X∈  are linear independent, it 
follows that there is a vertex adjacent to u which lies out-
side X . 
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    Let ( )uΓ , ( )X uΓ and ( )X uΓ be the set of neighboursof 
u in G , X  and G X− , respectively. Suppose by way of 
contradiction that u and v are vertices in X with the same 
neighbourhoods in X . From Proposition 3.2 we have 

( ) ( )

1 1

X X

u i i
i u i ui u i u

E e E e E e
d d d dρ ρ ρρ
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Since 0ud ≠ , from Eq. (1) we obtain that 
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( ) ( )

1 1

XX

j v v j
j v j vj j

E e d E e E e
d dρ ρ ρρ

∈Γ ∈Γ

= −∑ ∑       (16) 

from Eq. (2). By subtracting the both sides of equations, 
we have 
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This is a relation on vectors in { : }jE e j Xρ ∈ . Since these 
vectors are linear independent, it follows that either (a) 

0ρ = , u is not adjacent to v  and ( ) ( )X Xu vΓ = Γ , or (b) 
1

ud
ρ = − =

1

vd
− , u ~ v  and  

( ) { } ( ) { }X Xu u v vΓ = Γ  , contrary to the assumption.  
Theorem 3.3. Suppose that G has ρ as a R-eigenvalue of 
multiplicity k. If X is a star set for ρ in G and if S is a 
proper subset of X , |S| = s, then ( )V G SR −  has ρ as an 
eigenvalue of multiplicity k − s. 
Proof. Since X is a star set for ρ , then from Proposition 
3.1 we have 0XI Rρ − ≠ . We distinguish three blocks as 
S, X − S and G − X  in matrix I Rρ − , one can get that 
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Since ( )Xrank I R n kρ − = − , we have 

( )( )V G Srank I R n kρ −− ≥ − . Assume by way of contradic-
tion that ( )( )V G Srank I R n k iρ −− ≥ − + for i > 1. Then 

( )rank I R n k iρ − ≥ − + , and so ( )Gm k iρ ≤ − , a contradic-
tion. So we have ( )( )V G Srank I R n kρ −− = − . Thus, ( )V G SR −  

has ρ as an eigenvalue of multiplicity k − s. The result 
follows. 

4. The Relation between Spectral 
Decomposition and Star Complements 
Theorem 4.1. The matrices Ui of spectral decomposition 
and 

i
Eρ of star complements are equivalent for i = 1, ,m . 

Proof. The proof is similar to that of adjacency matrix A 
[1]. 

5. Further Consideration 
Let G be a graph of order n with adjacency ma-

trix A and Randić Matrix R . We have known that if 
A has n+ , 0n , and −n positive, zero, and negative 
eigenvalues, respectively ( 0n n n n+ −+ + = ), then R  
has n+ , 0n , and n−  positive, zero, and negative ei-
genvalues, respectively. Furthermore, If A has a 
positive (or negative) eigenvalue with multiplicity 
k, whether R also has an eigenvalue with the same 
multiplicity? 
By star complements, there exists a star set X for λ  
in G such that X k=  and G X−  is connected. Let 

( )X V G X= − ,  then we can write 
T
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in which 0XI Aλ − ≠ , and from Theorem 5.1.7 of [1] we 
have 

1( )T
X XI A B I A Bλ λ −− = −                      (21) 

Correspondingly, we can write R as 




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where 2
1

2
1

−−= XXXX DADR , 2
1

2
1

−−= XXXX DADR  

and 2
1

2
1

−−= XX BDDC , that is XR  and XR  are the 
principal sub-matrices of R  corresponding to the 
rows and columns in X  and X  respectively.  
The question is that whether we can find a R -
eigenvalue ρ of G such that ρ is not the eigenvalue 
of XR ?  If the answer is positive, we need addi-

tionally to show that CRICRI X
T

X
1)( −−=− ρρ . 

If so, the ρ -eigenvectors has the form 
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 from Theorem 3.1, where 
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k
k RY ∈ . Then ρ is the eigenvalue we required. 

However, from Eq. (3) we only have 
1 1 1 1 1 1 1 1 1 1

1 12 2 2 2 2 2 2 2 2 2( ) ( ) ( )T T
X X X X XX X X X X X X XD I A D D B D D I A D D BD C D I A D Cλ λ λ
− − − − − −− −− = − = −   (22) 

which gives 1 1 1( )T
X X X X X XD R C D D R D Cλ λ− − −− = − . 

Clearly, 1 1
X XI D Dρ λ λ− −= = if and only if 

1 1k k nd d d d λ
ρ+= = = = = =  , which implies G is a d -

regular graph. In this case, we have 

D dI= , and 
1 1
2 2 1( ) ( )R dI A dI A

d
− −

= = . It implies that 

i
i d

λρ =  for 1, ,i n=  . 
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