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Abstract: In this paper, we propose a new non-monotone trust region algorithm for equality constrained op-
timization problems. We incorporate a new non-monotone strategy into trust region algorithm to construct a 
more relaxed trust region procedure. The global convergence is subsequently proved under some mild condi-
tions. 
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1. Introduction 
In this paper, we consider the following equality con-
strained optimization problem 

min ( )

. . ( ) 0, 1, 2, ,
nx R

i

f x

s t h x i m


  

                   (1) 

where ( ) : nf x R R  and 
( ) : ( 1, 2, , )( )n

ih x R R i m m n  
 are assumed to be 

continuously differentiable functions. 
Many authors have given a lot of trust region algorithms 
to solve above problem (see [4,8,9]). These methods 
have the same feature: to enforce strict monotonicity for 
merit function at every iteration. Paper [1] shows that 
strict monotonic trust region methods are not always ef-
fective for some problems. 
In 1986, the non-monotone line search technique was 
first proposed by Grippo et al. [7]. It shows that the non-
monotone technique is helpful to avoid Maratos effect 
which is a common occurrence in difficult nonlinear 
problems. During the last few years, the non-monotone 
technique have been incorporate into trust region method 
to deal with unconstrained and constrained optimization 
problems [2,3,10,11,12,13].  These papers show that non-
monotone technique can improve convergence rate in the 
case that a monotone technique is forced to creep along 
the bottom of a narrow curved valley; also they can im-
prove the possibly of finding the global optimum.  
In this paper we extend the non-monotone technique to 
trust region method for equality constrained optimization 
problems. 
The rest of this paper is organized as follows: in Section 
2, we describe a new non-monotone trust region algo-
rithm. In Section 3, we prove that the proposed algorithm 

is globally convergent. Finally, some conclusions are 
expressed in Section 4. 

2. Algorithm 
Before describing the new algorithm, we introduce some 
notations: ( ) ( ), ( )g x f x A x   

1 2( ) ( ( ), ( ), , ( )) n m
mh x h x h x h x R      

. We de-
fine the matrix 

1( ) ( )( ( ) ( )) ( )T TP x I A x A x A x A x              (2) 
where ( )A x  has full column rank. 
We know that a point x  is called a stationary point of 
problem (1) if it satisfies the Kuhn-Tucker condition 

( ) ( ) ( ) 0h x P x g x                         (3) 
Now we discuss our new non-monotone trust region al-
gorithm for solving problem (1). At k th iteration, if kx  
does not satisfy the Kuhn-Tucker condition, we compute 
a trial step kd  by solving the following quadratic pro-
gramming sub-problem 

1min
2

. . 0

n

T T
k k

d R

T
k k

k

g d d B d

s t h A d
d




 

 

                        (4) 

where kB  is an n n  symmetric matrix which is the 
Hessian of the Lagrangian function at ( , )k kx   or an ap-
proximation to it, 0k   is a trust region radius. 
For testing whether the point k kx d  is accepted as the 
next iteration, we use the augmented Lagrangian merit 
function 

2( , , ) ( ) ( ) ( ) ( )Tx f x x h x h x             (5) 
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where ( )x  satisfies 
2min ( ) ( )

mR
g x A x





 

                        (6) 

and 0  is the penalty parameter. 
Now, we define 

( ) (1 )k k l k k kR                            (7) 
where 

( ) 0 ( )
max { ( , , )}l k k j k j k jj m k

x     
    

and 
min max

0 ( ) min{ ( 1) 1, },
(0) 0, 0,0 1

m k m k N
m N  
   

    
 and 

min max[ , ]k   . 
The actual reduction is 

( , ( ), )k k k k k k kAred R x d x d      

2 2

1( ) ( ( )
2

) ( ) ( )

T T
k k k k k k k k k k

T T T
k k k k k k k k k

Pred g A d d B d x d

h A d h h A d

 

 

    

       

(8) 

Therefore, the ratio is calculated 
( , ( ), )k k k k k k

k
k

R x d x d
Pred

 


  
  

Now, we can outline our new non-monotone trust region 
algorithm. 
Algorithm 1 

Step 1 Given 
0 0 0

1 2 1 2

min

, , 0, 0,
0 1,0 1,
0 1

n n nx R B R 
   


    

     

 

 

max 01, 0, 0, 0N      . Set 0, (0) 0.k m   
Step 2 If k k kh P g      , stop. 
Step 3 Solve the sub-problem (4) to determine kd . If 

0kd  , then stop; otherwise, calculate r kP ed . If 

2 2r ( )
2

Tk
k k k k kP ed h h A d


               (9) 

does not hold, set 

2 2

1( ) ( ( ) ) ( )
22

k

T T T T
k k k k k k k k k k k k k

T
k k k k

g A d d B d x d h A d

h h A d

 

  

 

     

    

(10) 

Step 4 Compute , rk kAred P ed  and k . If 1k  , then 
set 1k k kx x d   . 
Step 5 Set 

2

1 2 1 2

1 2

[ , ), ;
[ , ), ;
[ , ), .

k k

k k k k

k k k

if
if
if

 
   
   



           

      (11) 

Step 6 Update the matrix kB  to generate 1kB  . Set 

1 , 1k k k k      and return to Step 2. 

3. Convergence Analysis 
To prove the global convergence of the new algorithm, 
the following assumptions are proved throughout this 
paper: 
Assumptions 
(H1) There exists a convex set  nR  such that  

,k k kx x d   for all k . 
(H2) f  and 2 ( ), 1, 2, ,ih C i m   

. 
(H3) The matrix ( ) ( )A x h x  has full column rank for 
all x  . 
(H4) 2 1( ), ( ), ( ), ( ), ( ), ( ( ) ( ))Tf x h x A x f x f x A x A x   , 
and each 2 ( ), 1, 2, ,ih x i m  

 are all uniformly 
bounded in norm in  . 
(H5) The matrices { , 1, 2, }kB k    have a uniform upper 
bound, i.e. there exist 1 0b   such that 1kB b   for all 
k N . 
In what follows, we introduce some basic Lemmas which 
play important role in the analysis of our new algorithm. 
Lemma 1. Under the assumptions, there exists a positive 
constant 2b  such that 

2 2
2 min{ , }T

k k k k k k kh h A d b h h             (12) 

2
1r min{ , }
2k k k k kP ed b h h     .         (13) 

Proof. The proof can be found from Lemma 7.2 in [4]. 
Lemma 2. Let kd  be a step generated by Algorithm 1, 

and let ˆ
kd  be its normal components, under the assump-

tions, there exists a positive constant 3b  such that 

 3
ˆ

k kd b h    .                        (14) 
Proof. We have 

1

1

1

ˆ ˆ( )
ˆ( ) ( )

ˆ( ) [ ]

T T
k k k k k k

T T
k k k k k k k

T T
k k k k k k k

d A A A A d

A A A h A d h

A A A h A d h









  

  

   

 

     

 

Now, since  
ˆT

k k k kh A d h     
Hence 

3
ˆ

k kd b h     
where 1

3 2 ( )T
k k kb A A A   

. 
Lemma 3. Under the assumptions, there exists a positive 
constant 4b  such that 

2
1 4rk k k k kP ed b d       .          (15) 

Proof. See Lemma 7.4 and 7.5 in [4]. 
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Lemma 4. Let kd  be a step generated by Algorithm 1, 

and let ˆ
kd  be its normal components, then there exists 

positive constants 1b  and 5b  such that 

1

5

ˆ( )1 ˆr ( ) min ,
4 2

ˆ| ( ) |

k k k k
k k k k k k

T
k k k k k k

P g B d
P ed P g B d

b

b d h g B d h

         

  

 

 

  

2 2( )T
k k k k kh h A d          

where 2 2ˆ
k k kd      and 1ˆ ( )T

k k k k kh A A A h . 
Proof. By the same way as in the proof of Lemma 6.7 in 
[5], we have the conclusion. 
Lemma 5. Let k̂h  be as in Lemma 4. Then there exist 
constant 6b  and 7b  such that 

6 7
ˆ| ( ) | [ ]

k

T
k k k k k k t kg B d h b d b d h         

where 
kk td   is the last acceptable step. 

Proof. The proof is similar to that of Lemma 6.8 in [5]. 
Lemma 6.(See Lemma 5 in [6]) Under the assumptions, 
if 0k k kP g h     , then there exists a integer 0k  and a 
positive constant   such that for all 0 , kk k    . 
Lemma 7. Under the assumptions and there exists an 
infinite set N , we have 

( ) 1lim lim liml k k kk N k N k N
k k k

R  
  

    . 

Proof. Using definition of kR  and ( )l k , we observe that 

( ) ( ) ( ) ( )(1 ) (1 )k k l k k k k l k k l k l kR              

And from the definition of ( )l k , we have ( )k l k  , for 
any k N . Hence, 

( )

(1 )
(1 )

k k k k k

k l k k k kR
 

 

     

     
 

Then we have 

( )k k l kR    
This fact, along with Lemma 4.7 in [3], leads us to have 
the conclusion. 
Theorem 1. Under the assumptions. If Algorithm 1 fails 
to satisfy the termination condition, then 

lim 0kk
h


                                (16) 

Proof. We consider two cases. 
Case 1. lim inf 0kk

  . Suppose that 

lim sup 0kk
h 


   . Then there exists an infinite se-

quence of indices { }jk  such that 
2kh 

   for all 

{ }jk k . 
For any such k , from Lemma 1 we have 

2
1r min{ , }
2k k k k kP ed b h h      

2
1 min{ , }
4 2k kb 
    

Then 
1

1 1 2r min{ , }
4 2k k k k kR P ed b 

       

Using Lemma 7, we get 
lim inf 0kk

  . 

This is a contradiction, the contradiction shows that (16) 
hold. 
Case 2. lim inf 0kk

  , assume that lim 0
j

j
kk 

  , 

which means 1jk   for all jk . Assume that (16) does 
not hold, similar to case 1, we have 

2 2
1r min{ , }
4 2 4j jk k k k kP ed b b 
      . 

From Lemma 3, we can obtain 
2

1 1 4

24

r
1 0

r r
j j j j j j

j j j

k k k k k k k

k k k k

P ed b

P ed P ed b




      

   


This implies that  
1

1r
j j

j

k k

kP ed


 
 . 

We know that 
k kR  . 

Then 
1 1

1r r
j j j j

j

j j

k k k k
k

k k

R

P ed P ed
 

   
   . 

This is a contradiction, the contradiction shows that (16) 
hold. 
Theorem 2. Under the assumptions. If Algorithm 1 fails 
to satisfy the termination condition, then 

lim inf 0k kk
P g


  .                         (17) 

Proof. We consider two cases. 
Case 1. lim inf 0kk

  . Suppose that there exist an 

0  and an integer 0k  such that k kP g    for all 

0k k . By (H5) and Lemma 2, we can get 

1 3

5

ˆ ˆ( )k k k k k k k k k

k k k

k k k

P g B d P g P B d
P g b b h
P g b h

  

 

 

     

   

   

. 

where 5 1 3b b b . 
From Theorem 1 there exist 1k  sufficiently large such 
that for all 1k k , we have 
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5

1
2kh
b

  . 

Thus for 0 1max[ , ]k k k  
1ˆ( )
2k k k kP g B d    .                    (18) 

From Lemma 4 and Lemma 5 

1

5 6 7

ˆ( )1 ˆr ( ) min ,
4 2

[ ]
k

k k k k
k k k k k k

k k k k t k

P g B d
P ed P g B d

b

b d h b d b d h

         

  

 

 

        

 

Using (16) and (18), we have  

1

1

ˆ( )1 1ˆr ( ) min ,
8 2 2

min ,
32 2

k k k k
k k k k k k

k

P g B d
P ed P g B d

b

b
 

         
      

 

 

Then  

1
1 1

1

r min ,
32 2k k k kR P ed

b
 

 

        
 

Using Lemma 7, we have 
lim inf 0kk

   

This is a contradiction, the contradiction shows that (17) 
hold. 
Case 2. lim inf 0kk

  , assume that lim 0
j

j
kk 

  , 

which means 1jk   for all jk . Assume that (17) does 
not hold, similar to case 1, we have 

1

r min ,
32 2 32j jk k kP ed

b
          

 

From Lemma 3, we can obtain 
2

1 1 4

32

r
1 0

r r
j j j j j j

j j j

k k k k k k k

k k k

P ed b

P ed P ed 

      
   


. 

Similar Case 2 in Theorem 1, we can obtain 
1jk  . 

This is a contradiction, then (17) hold. 
Theorem 3. Under the assumptions, Algorithm 1 produc-
es iterates { }kx , which satisfy 
lim inf( ) 0k k kk

h P g


     . 

Proof. By Theorem 1 and Theorem 2 we can get the con-
clusion. 

4. Conclusions 

In this paper, we propose a new non-monotone trust re-
gion algorithm for solving equality constrained optimiza-
tion problems. After we analyzed the properties of the 
new algorithm, the global convergence theory is proved. 
We believe that there is considerable scope for modifying 
and adapting the basic ideas introduced in this paper. In 
the near future, we would like to combine the new algo-
rithm with line search algorithm in order to sufficiently 
use the information which the algorithm has already de-
rived. 
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