The Girth of the Zero-Divisor Graph of the Direct Product of Commutative Rings

Qiong LIU*
Department of Mathematics, Shanghai University of Electric Power, Shanghai, CHINA

Abstract

This electronic document is a "live" template. The various components of your paper [title, text, heads, etc.] are already defined on the style sheet, as illustrated by the portions given in this document. (Abstract) In this paper, we consider the zero-divisor graph of the direct product of commutative rings. Specifically, we give the equivalent characterization of the girth of the zero-divisor graph of $R_{1} \times R_{2}$, when thegirth is 3 , 4 , or ∞, where each R_{i} is a commutative ring for $i=1,2$.

Keywords: Zero-divisor graph; Diameter; Girth; Commutative Rings

1. Introduction

The concept of zero-divisor graph was first defined and studied for commutative rings by I. Beck in [1] and later modified and further studied by D.F. Anderson and P.S. Livingston in [2]. Since then the interplay between algebraic properties of a ring R and the graph theoretic properties of the zero-divisor graph $\Gamma(R)$ has been studied extensively by many authors, see e.g.[3,4,5]. This provides a new area of research, motivating many new views and new unsolved problems to the classical research fields.
For any commutative ring R , we use $\Gamma(\mathrm{R})$ to denote the zero-divisor graph of R . Recall that the zero-divisor graph $\Gamma(R)$ is a simple, connected and undirected graph with diameter less than four and girth less than five. Recall that the vertices of $\Gamma(R)$ are the nonzero elements of $Z(R)$, and there is an edge between a and b if and only if $a \neq b$ and $a b=0$. In this paper, we use the symbol $a-b$ to denote that the vertex a and b are adjacent to each other. Recall that a simple graph G is called a refinement of a connected simple graph H if $V(G)=V(H)$ and $a-b$ in H implies $a-b$ in G for all distinct vertices a, b of G. In [2, Theorem 2.5], it was pointed out that for any commutative ring $\mathrm{R}, \Gamma(R)$ is a refinement of a star graph if and only if either $R \cong Z_{2} \times D$, where D is an integral domain, or $Z(R)$ is an annihilator ideal. For a finite commutative ring $\mathrm{R}, \Gamma(R)$ is a refinement of a star graph if and only if either $R \cong Z_{2} \times F$, where F is a finite field, or R is a local ring [2 , Corollary 2.7]). Recall that a graph G is compelte if any two vertex of G is adjacent to each other. A graph G is called a compelte graph with a
thorn, if all end vertex of the gaph is adjacent to one vertex of G , all the end vertex is called the thorn of G .
The main purpose of this paper is to study the girth of the zero-divisor graph of $R_{1} \times R_{2}$, where R_{1} and R_{2} are all commutative rings. Also, we give the equivalent characterization of the girth of $\Gamma\left(R_{1} \times R_{2}\right)$.
Throughout this paper, all rings considered will be commutative rings with identity $1 \neq 0$. For any ring R, let $N(R)$ be its nilradical, $Z(R)$ be its set of zero-divisors, $Z(R) *$ be its set of nonzero elements of $Z(R)$. We denote $B_{1}=Z_{4}, B_{2}=Z_{2}[x] /\left(x^{2}\right)$ for convenience, both satisfy $\left|B_{i}\right|=4$, and $\left|Z\left(B_{i}\right)\right|=2$, where $i=1,2$. We adopt graph theoretic notation from [6].

2. Preliminary

Let us recall two useful results from [5,7,8], which will be needed in section 3 .
Lemma 1 Let R be a finite commutative ring. Then the following conditions are equivalent:
(1) $\operatorname{gr}(\Gamma(R))=\infty$;
(2) $\Gamma(R)$ is either a star graph or a two-star graph;
(3) R is isomorphic to one of the following rings:

$$
\begin{aligned}
& Z_{4}, Z_{2}[x] /\left(x^{2}\right), Z_{8}, Z_{2}[x] /\left(x^{3}\right), \\
& Z_{4}[x] /\left(x^{2}-2,2 x\right), Z_{9}, Z_{3}[x] /\left(x^{2}\right), \\
& Z_{2} \times F, Z_{2} \times Z_{4}, Z_{2} \times Z_{2}[x] /\left(x^{2}\right) .
\end{aligned}
$$

Remark 1 If R is isomorphic to Z_{4}, or $Z_{2}[x] /\left(x^{2}\right)$, then the graph $\Gamma(R)$ is an isolated vertex. If R is isomorphic to $Z_{8}, Z_{2}[x] /\left(x^{3}\right)$, or $Z_{4}[x] /\left(x^{2}-2,2 x\right)$, then $\Gamma(R)$ is the star graph $K_{1,2}$. If R is isomorphic to Z_{9} or $Z_{3}[x] /\left(x^{2}\right)$, then the graph $\Gamma(R)$ is the star graph $K_{1,1}$.

If R is isomorphic to $Z_{2} \times F$, the star graph $K_{1, q}$, where $q=|F|-1$. If $\quad \mathrm{R}$ is isomorphic to $Z_{2} \times Z_{4}$, or $Z_{2} \times Z_{2}[x] /\left(x^{2}\right)$, then the zero-divisor graph $\Gamma(R)$ is a two-star graph.
Lemma 2 Let R be a finite commutative ring. Then the following conditions are equivalent:
(1) $\operatorname{gr}(\Gamma(R))=3$;
(2) $\Gamma(R)$ is a complete graph K_{3} with n thorns, where $n=1,3$;
(3) R is isomorphic to one of the following rings:
$Z_{2}[x, y] /(x, y)^{2}, Z_{4}[x] /(2, x)^{2}$,
$F_{4}[x] /\left(x^{2}\right), Z_{4}[x] /\left(x^{2}+x+1\right)$,
$Z_{2}[x] /(x)^{4}, Z_{4}[x] /\left(x^{2}+2\right), Z_{4}[x] /\left(x^{2}+2 x+2\right)$,
$Z_{4}[x] /\left(x^{3}-2,2 x\right), Z_{16}, Z_{2} \times Z_{2} \times Z_{2}$,
$Z_{2}[x, y] /\left(x^{2}, y^{2}\right), Z_{4}[x] /\left(x^{2}\right)$,
$Z_{4}[x, y] /\left(x^{2}, y^{2}, x y-2\right)$.
Remark 2 If R is isomorphic to $Z_{2}[x, y] /(x, y)^{2}$, $Z_{4}[x] /(2, x)^{2}, F_{4}[x] /\left(x^{2}\right)$, or $Z_{4}[x] /\left(x^{2}+x+1\right)$,
then the graph $\Gamma(R)$ is the complete graph K_{3}. If R is isomorphic to $Z_{2}[x] /(x)^{4}, Z_{4}[x] /\left(x^{2}+2\right)$,
$Z_{4}[x] /\left(x^{2}+2 x+2\right), Z_{4}[x] /\left(x^{3}-2,2 x\right)$, or Z_{16}, then the graph $\Gamma(R)$ is a complete graph K_{3} with a thorn. If R is isomorphic to $Z_{2} \times Z_{2} \times Z_{2}$, then the graph $\Gamma(R)$ is the triangle with three thorns. If R is isomorphic to $Z_{2}[x, y] /\left(x^{2}, y^{2}\right), Z_{4}[x] /\left(x^{2}\right)$, or $Z_{4}[x, y] /\left(x^{2}, y^{2}, x y-2\right)$, then the graph $\Gamma(R)$ is the fan graph F_{3} with three leaves.
Lemma 3 Let R be a finite commutative ring. Then the following conditions are equivalent:
(1) $\operatorname{gr}(\Gamma(R))=4$;
(2) $\Gamma(R)$ is a complete bipartite graph or a complete bipartite graph with a thorn;
(3) R is isomorphic to one of the following rings:
$D_{1} \times D_{2}, B_{i} \times D(i=1,2)$.
Remark 3 If R is isomorphic to $D_{1} \times D_{2}$, then the zerodivisor graph $\Gamma(R)$ is a complete bipartite graph. If R is isomorphic to $B_{i} \times D$, then the zero-divisor graph $\Gamma(R)$ is a complete bipartite graph with a thorn for each $i=1,2$.

3. Main Results

Now we give the main result of this paper in this section. Theorem 1 Let R_{1} and R_{2} be commutative rings. Then $\operatorname{gr}\left(\Gamma\left(R_{1} \times R_{2}\right)\right)=4$ if and only if R_{1} is domain with
$\left|R_{1}\right| \geq 3$, and R_{2} is either domain with $\left|R_{2}\right| \geq 3$, or $R_{2} \cong B_{i}(i=1,2)$.
Proof " \Leftarrow ". Clearly.
$" \Rightarrow$ ". Let $G=\Gamma\left(R_{1} \times R_{2}\right)$. If $\operatorname{gr}(G)=4$, then G contains no triangles. By Lemma 3, G is either a complete bipartite graph or a complete bipartite graph with a thorn. If G is a complete bipartite graph. We claim that each R_{1} is domain $(i=1,2)$. In fact, if $Z\left(R_{1}\right) \neq 0$, then there exist $a_{1}, b_{1} \in Z\left(R_{1}\right)^{*}$ such that $a_{1} b_{1}=0$. Let $G=V_{1} \cup V_{2}$, where V_{1}, V_{2} are two vertex set of G. From $(0,1)-\left(a_{1}, 0\right)-\left(b_{1}, 1\right)$, we can assume $\left(a_{1}, 0\right) \in V_{1}$ and $\left(b_{1}, 1\right),(0,1) \in V_{2} .(0,1)$ and $(1,0)$ are adjacent implies $(1,0) \in V_{1}$. Thus $(1,0)$ and $\left(b_{1}, 1\right)$ are adjacent, and hence $b_{1}=0$. A contradiction. If G is a complete bipartite graph with a thorn, then G is complemented, but not uniquely complemented. By Lemma 1, we can see that R_{1} is domain and R_{2} is isomorphic to $B_{i}(i=1,2)$.
Corollary 1 For any finite commutative ring R, $\operatorname{gr}(\Gamma(R))=4$ if and only if either $R \cong F_{1} \times F_{2}$ for finite fields F_{i} with $\left|F_{i}\right| \geq 3(i=1,2)$, or $R \cong F \times B_{i}$ for finite field F with $|F| \geq 3$.
Proof If R is local with maximal ideal M, then $\mathrm{Z}(\mathrm{R})=\mathrm{M}=\operatorname{Ann}(\mathrm{x})$ for some $x \in Z(R)^{*}$. This implies that $\Gamma(R)$ is a refinement of a star graph, and hence $\operatorname{gr}(\Gamma(R))$ is either infinite or less than 4. This is impossible. Therefore, R is a finite direct product of Artinian local rings. Write R as $R_{1} \times R_{2} \times \ldots \times R_{n} \quad(n \geq 2)$, where each R_{i} is Artinian local. Notice that if $n \geq 3$, then there is a triangle

$$
(1,0,0, \ldots)-(0,1,0, \ldots)-(0,0,1, \ldots)-(1,0,0, \ldots)
$$

This is impossible since $\operatorname{gr}(\Gamma(R))=4$. Thus $n=2$ and $R \cong R_{1} \times R_{2}$ for finite local rings $R_{i}(i=1,2)$. The rest is directly from Theorem 1 and Lemma 2.

Theorem 2 Let R_{1} and R_{2} be commutative rings. Then $\operatorname{gr}\left(\Gamma\left(R_{1} \times R_{2}\right)\right)=3$ if and only if either $R_{1} \cong B_{i}$ ($i=1,2$) and R_{2} is not domain, or $\left|Z\left(R_{1}\right)\right| \geq 3$ and R_{2} is any arbitrary commutative ring.
Proof We only need to prove the necessary condition. Consider the value of $\left|Z\left(R_{i}\right)\right|(i=1,2)$. Clearly, $\left|Z\left(R_{i}\right)\right| \geq 1$ for all $i=1,2$. By Theorem $2, R_{1}$ and R_{2} can not be both domains with $\left|R_{i}\right| \geq 3$. Assume that R_{1} is not domain. Then $\left|Z\left(R_{1}\right)\right| \geq 2$. If $\left|Z\left(R_{1}\right)\right|=2$, then $R_{1} \cong B_{i}(i=1,2)$. By Theorem 1, R_{2} is not domain. If
$\left|Z\left(R_{1}\right)\right| \geq 3$, then for any commutative ring R_{2}, there exists a triangle

$$
\left(a_{1}, 0\right)-\left(a_{2}, 0\right)-(0,1)-\left(a_{1}, 0\right)
$$

where $a_{1}, a_{2} \in Z\left(R_{1}\right)^{*}$ and $a_{1} \neq a_{2}$. Thus the girth of the zero-divisor graph of $R_{1} \times R_{2}$ is three.

Lemma 4 Let R be a commutative ring and R is not domain. Then $\operatorname{gr}\left(\Gamma\left(B_{i} \times R\right)\right)=3(i=1,2)$.
Proof We only need consider the case $B_{1}=Z_{4}$. By assumption, $|Z(R)|^{*} \geq 1$. If $|Z(R)|^{*}=1$, let
$a \in Z(R)^{*}$ such the $a^{2}=0$. Then

$$
(\overline{2}, a)-(\overline{0}, a)-(\overline{2}, 0)-(\overline{2}, a)
$$

forms a triangle and hence the girth is three. If $|Z(R)|^{*} \geq 2$, we can prove similarly. Also, we can prove $\operatorname{gr}\left(\Gamma\left(B_{2} \times R\right)\right)=3$ in the same way.
Theorem 3 For any commutative ring and R_{1} and R_{2}, $\operatorname{gr}\left(\Gamma\left(R_{1} \times R_{2}\right)\right)=\infty$ if and only if $R_{1} \cong Z_{2}$ and either R_{2} is domain or $R_{2} \cong B_{i}(i=1,2)$.
Proof We only need to prove the necessary condition. Clearly, $\left|\Gamma\left(R_{1} \times R_{2}\right)\right| \geq 2$. Therefore, $\Gamma\left(R_{1} \times R_{2}\right)$ is either a star graph or a two-star graph. If $\left|R_{i}\right|>2$ for all $i=1,2$, then there is a rectangle $\left(a_{1}, 0\right)-(0,1)-(1,0)-\left(0, a_{2}\right)-\left(a_{1}, 0\right)$, where $a_{1} \in R_{i} \backslash\{0,1\}(i=1,2)$. This is impossible since $\operatorname{gr}\left(\Gamma\left(R_{1} \times R_{2}\right)\right)=\infty$. Thus either $\left|R_{1}\right|=2$ or $\left|R_{2}\right|=2$. Assume that $\left|R_{1}\right|=2$. Then $R_{1} \cong Z_{2}$. If $\left|Z\left(R_{2}\right)\right| \geq 3$, we can
check that there is a triangle in $\Gamma\left(R_{1} \times R_{2}\right)$. Thus $\left|Z\left(R_{2}\right)\right| \leq 2$. If $\left|Z\left(R_{2}\right)\right|=1$, then R_{2} is domain, and hence $\Gamma\left(R_{1} \times R_{2}\right)$ is a star graph. If $\left|Z\left(R_{2}\right)\right|=2$, then $R_{2} \cong B_{i} \quad(i=1,2)$ by Lemma 1. Therefore, $\Gamma\left(R_{1} \times R_{2}\right)$ is a two-star graph and by Lemma 1 , we can easily get the result.

Acknowledgement

This research is partly supported by National Natural Science Foundation of China (No.11401368) and Natural Science Foundation of Shanghai (No.14ZR1417900).

References

[1] I. Beck, Coloring of commutative rings, J. Algebra, 1988, 116(2),pp. 208-226.
[2] D.F. Anderson, P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 1999, 217(3), pp. 434-447.
[3] F.R. DeMeyer, T. McKenzie, K. Schneider, The zero-divisor graphs of a commutative semigroup, Semigroup Forum, 2002, 65(4), pp. 206-214.
[4] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. in Algebra, 2002, 30(3),pp. 3533-3558.
[5] D.C. Lu, T.S. Wu, On bipartite zero-divisor graphs, Discrete Math. 2009(209), pp. 755-762.
[6] F. Buckley, M. Lewinter, A Friendly Introduction to Graph Theory. Prentice-Hall, 2003.K. Elissa, "Title of paper if known," unpublished.
[7] Q. Liu, T.S. Wu, On zero-divisor graphs whose cores contain no rectangles, Algebra Colloq., 2011, 18(4), pp. 675-684.
[8] S.P. Redmond, On zero-divisor graph of small finite commutative rings, Discrete Math., 2007, 307(1),pp. 1155-1166.

