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Abstract: Dominance relation rough set approach (DRSA) is a useful mathematical tool to deal with prefe-
rence-ordered data. The main idea is using dominance relations to replace equivalent relations in classical 
rough set theory. However, the definition of conventional dominance relation is very strict which may limit its 
application to information systems with relative large number of attributes. In this paper, we relax the condi-
tions in the definition of dominance relation and introduce the concept of extended dominance relation. The 
proprieties of this new concept are also discussed and it is found that all the properties of classical dominance 
relation are still satisfied. 
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1. Introduction 
Rough set theory is proposed by Pawlark [1] in 1982 
which is a powerful mathematical tool to deal with in-
consistency and ambiguity information. Classical rough 
set theory is developed based on equivalent relation and 
the basic knowledge granules are the equivalent classes. 
Based on the knowledge granules, every concept in the 
universe can be described by its two approximations (i.e., 
lower and upper approximations) which are the union of 
some basic knowledge granules. Further, knowledge re-
duction methods can be developed using the two approx-
imations and decision rules are finally generated. The 
quality and quantity of the generated rules depend on the 
objects in the lower and upper approximations. However, 
the classical rough set theory cannot deal with prefe-
rence-ordered data such as “high”, “medium” and “low”. 
This kind of ordered information often occurs in many 
real-life applications especially multi-criteria decision-
making problems. In order to address this issue, Greco et 
al. extended the classical rough set theory by introducing 
the concept of dominance relation and proposed domin-
ance-based rough sets approach (DRSA) [2-6]. In these 
references, the conditional attributes in an information 
system with preference order are called criteria. The 
knowledge granules generated based on equivalent rela-
tions in classical rough sets are replaced by dominance 
classes. The concepts of lower/upper approximations, 
knowledge reductions and decision rules are consequent-
ly defined based on dominance relations. Currently, 
DRSA has been widely applied in multi-criteria decision 
problems[7,8]. 
According to the definition of dominance relation, an 
object x is said to dominate another object y only when x 
dominates y on all the conditional attributes (criteria). 

This requirement can be hardly satisfied especially when 
there are many conditional attributes. In most situations, 
an object x dominates another object y on part of the 
attributes but is dominated by y on some other attributes. 
In this case, the dominance classes based on conventional 
dominance relations would be very small which results in 
small approximation sets. This will finally leads to rela-
tive small set of decision rules, which may decrease the 
coverage of rule set and problem-solving ability. In other 
words, some objects cannot be covered by any generated 
rule. In this paper, we extend the concept of dominance 
relation to relax its strict requirement in the definition. As 
a result, larger approximations of target concepts would 
be obtained and more decision rules would be generated 
from these approximations.  
The remainder of this paper is organized as follows: We 
present basic notions of DRSA in Section 2; and point 
out the problem of the definition of dominance relation 
with examples in Section 3. In section 4, we define the 
new extended dominance relation and provide its proper-
ties, and conclusions are given finally. 

2. Basic Concepts and Problem Statement 
2.1. Basic Concepts in DRSA 

As a prior knowledge, this section describes the involved 
concepts based on dominance relations of rough set 
theory.  
Definition 1(Information System) A quadruple S = (U, A, 
V, f) is an information system, where U is a nonempty 
finite set of objects, called the universe. A is a nonempty 
finite set of attributes, ,A C D C D= ∪ ∩ = ∅ , where C 
and D denote the sets of condition attributes and decision 
attributes, respectively. a A aV V∈=  , aV is the domain of 
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attribute a. f: U A V× → is an information function, which 
gives values to every object on each attribute, namely,

( ), , , aa A x U f x a V∀ ∈ ∈ ∈  . 
  Definition 2 (Dominance Relation) Let S = (U, A, V, f) 
is an information system, for B A⊆ , we denote 

( ) ( ) ( ){ }, : ,B i j l i l j lR x x U U f x f x a B≤ = ∈ × ≤ ∀ ∈  

BR≤ is the dominance relations of information system. 
Based on definition 2, 

( ) ( ){ }
( ) ( ){ }

: ,

: , ,

P i j i j P

j l i l j l

D x x U x x R

x U f x f x a P P A

+ ≤= ∈ ∈ =

∈ ≤ ∀ ∈ ⊆

is the dominance class 

of ix . 
Definition 3 (Lower/upper approximations) Let X U⊆ is 
a target concept in the universe, and the lower and upper 
approximations are respectively defined as follows: 
             ( )( ) { : D X}PR X x U x≤ += ∈ ⊆ , 

( )( ) { : D X }PR X x U x
≤ += ∈ ∩ ≠ ∅ . 

2.2. Problem Statement 

From the definition of dominance relation in Section 2.1, 
an object x is said to dominate another object y on the 
attribute set A only when x dominates y on all the 
attributes in A. This is a strict requirement especially 
when the attribute set is large. As a result, most domin-
ance classes are relative small and so the approximation 
sets. Since the decision rules will generated from these 
approximations, the size of the approximations deter-
mines the quality and quantity of the rules.  
In the following, we use an example to explain our 
statement.  
Example 1. Given information system as in Table 1, U is 
the universe and there are 15 objects x1-x20 and 7 condi-
tion attributes a1-a7. 
 

Table 1. An information system 
U a1 a2 a3 a4 a5 a6 a7 d 
x1 6.7 2.8 6.7 2 5.8 2.7 4.1 2 
x2 5.1 2.5 3 1.1 5.7 4.4 1.5 2 
x3 5.4 3.4 1.5 0.4 6.9 3.1 5.4 1 
x4 5.1 3.4 1.5 0.2 6.1 2.6 5.6 3 
x5 5.5 3.5 1.6 0.5 7.1 3.2 5.5 3 
x6 6.3 2.5 3.2 1.3 5.8 4.6 1.7 2 
x7 6.7 2.9 6.8 1.9 6.2 2.8 4.2 1 
x8 6.3 3.4 3.1 1.2 6.9 4.5 1.8 2 
x9 6.7 3 6.8 2.1 5.9 2.8 4.3 1 
x10 6.6 3.1 6.9 2.2 5.9 2.6 4.4 2 
x11 6.6 3 6.9 2.1 6.1 2.7 4.4 3 
x12 5.5 3.6 1.7 0.6 7.1 3.3 5.6 3 
x13 6.3 3 3.2 1.4 6.1 2.8 1.8 1 
x14 6.5 3.1 5.9 2.1 6.2 2.4 3.8 2 
x15 6.3 2.8 6.5 2.2 5.9 2.9 4.5 3 
x16 5.2 2.6 3.1 1.3 5.8 4.5 1.6 2 
x17 6.7 2.4 6.8 2.1 6.2 2.8 4.3 1 
x18 6.5 2.6 6.3 1.8 6.1 2.7 4.3 2 
x19 6.6 2.5 6.2 1.9 6.1 2.5 3.8 1 
x20 6.8 3.1 6.9 2.2 6.3 2.9 4.4 3 

 

According to the definitions in Section 2.1, all the do-
minance classes can be computed as:  

( ) { }1 1 9 20, ,PD x x x x+ = , ( ) { }2 2 6 8 16, , ,PD x x x x x+ = ,  

( ) { }3 3 5 12, ,PD x x x x+ = , ( ) { }4 4 12,PD x x x+ = ,  
( ) { }5 5 12,PD x x x+ = , ( ) { }6 6PD x x+ = , ( ) { }7 7 20,PD x x x+ = ,  

( ) { }8 8PD x x+ = , ( ) { }9 9 20,PD x x x+ = , ( ) { }10 10 20,PD x x x+ = ,  

( ) { }11 11 20,PD x x x+ = , ( ) { }12 12PD x x+ = ,  

( ) { }13 13 20,PD x x x+ = ,  

( ) { }14 14 20,PD x x x+ = , ( ) { }15 15PD x x+ = , ( ) { }16 16PD x x+ = ,  

( ) { }17 17 20,PD x x x+ = , ( ) { }18 11 18 20, ,PD x x x x+ = ,  

( ) { }19 7 11 19 20, , ,PD x x x x x+ = , ( ) { }20 20PD x x+ = . 
Let { }3 7 9 13 17 19, , , , ,X x x x x x x= , then the lower and upper 
approximations of X are: 

( )( ) { : D X}PR X x U x≤ += ∈ ⊆ =Φ ; 

 { }3 7 9 13 17 19( ) , , , , ,R X x x x x x x
≤

= =X.  
Based on the two approximations, only 5 decision rules 
can be generated from ( )R X

≤ . If we consider the 20 ob-
jects as training examples, then there are only 10 objects 
are covered by these rules. Here, an object is said to be 
covered by a rule when this object meets the precondition 
of the rule, i.e., when this object dominates at least one 
object in the upper approximation ( )R X

≤ .        
Therefore, we can compute the set of objects which are 
covered by the generated rules as follows: 

( ) { }3 3 5 12, ,PD x x x x+ = ∪ ( ) { }7 7 20,PD x x x+ = ∪ ( ) { }9 9 20,PD x x x+ = ∪

( ) { }13 13 20,PD x x x+ = ∪ ( ) { }17 17 20,PD x x x+ = ∪

( ) { }19 7 11 19 20, , ,PD x x x x x+ = = 3 5 7 9 11 12 13 17 19 20{ , , , , , , , , , }x x x x x x x x x x . 
That is to say, 50% of the objects in the universe cannot 
be classified by the rules. 

3. Extended Dominance Relation and Nu-
merical Examples 
Definition 4.(Extended Dominance Relation) Let

( ), , ,S U A V f= be a target information system， P A⊆ , 

[ ]M mα= ⋅ , where m is the number of the attributes in P，
[*] denotes the round number of *，we define 

( ) ( ) ( )

1

, : , , ,
i j i j

P

k k

P

k k
k

x x U U f x a f x a

a P and
R

a Mα

≤

=

∈ ×

=
∃ ∈

≤ 
 
 

≥ 
 

∑
        

P
R

α

≤ is called the extended dominance relation of the in-
formation system S. 
Definition 5.(Extended Dominance/dominated 
classes)Let 0.5α >  and [ ]mM α= ⋅ , where m is the 

number of attributes, [ ]⋅ is the rounding operator, P C⊆ , 
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then the dominance/dominated classes can be respective-
ly defined as: 

( ) { }: ( , )
aP i j i j PD x x U x x R

α

+ ≤= ∈ ∈  

( ) { }: ( , )P i j j i PD x x U x x R
α α

− ≤= ∈ ∈  

Note: In definitions 4-5, we relax the conditions in defi-
nitions 2-3. Different from the original definition of do-
minance relation, on a attribute set P, we define an object 

ix dominating another object  jx when ix  dominates 

jx  on the majority of the attributes in P which is deter-

mined by the parameterα. Based on these definitions, 
the lower and upper approximations under extended do-
minance relations can be also defined as follows. 
Definition 6. (Lower/Upper approximations based on 
extended dominance relation) 

( )( ) { : D X}PR X x U x
αα

≤ += ∈ ⊆ , 

 ( )( ) { : D X }PR X x U x
α

α
≤ += ∈ ∩ ≠ ∅ . 

Example 2: Given an information system as in Table 1. 
Let =0.8α , and then according to the definition of the 
extended dominance relation (definition 4), the domin-
ance classes are computed as 

( ) { }1 1 7 9 10 11 15 17 20, , , , , , ,PD x x x x x x x x x
α

+ = , 

( ) 1 2 6 7 8 9 10 11 13
2

14 15 16 17 18 19 20

, , , , , , , , ,
, , , , , ,P

x x x x x x x x x
D x

x x x x x x xα

+  
=  
 

, 

( ) { }3 3 5 8 12, , ,PD x x x x x
α

+ = ,  
( ) { }4 3 4 5 7 8 11 12 13 17 18 20, , , , , , , , , ,PD x x x x x x x x x x x x

α

+ = , 
 ( ) { }5 5 12,PD x x x

α

+ = , 

 ( ) { }6 1 6 7 9 10 11 13 14 15 17 18 19 20, , , , , , , , , , , ,PD x x x x x x x x x x x x x x
α

+ = , 

 ( ) { }7 7 9 17 20, , ,PD x x x x x
α

+ = , ( ) { }8 8PD x x
α

+ = ,  
( ) { }9 9 10 11 17 20, , , ,PD x x x x x x

α

+ = , ( ) { }10 10 11 20, ,PD x x x x
α

+ = , 

 ( ) { }11 10 11 20, ,PD x x x x
α

+ = , ( ) { }12 12PD x x
α

+ = ,  
( ) { }13 7 8 9 10 11 13 14 15 17 18 19 20, , , , , , , , , , ,PD x x x x x x x x x x x x x

α

+ = , 

 ( ) { }14 7 9 10 11 14 17 20, , , , , ,PD x x x x x x x x
α

+ = , 

 ( ) { }15 10 15 20, ,PD x x x x
α

+ = ,  
( ) { }16 1 6 7 8 9 10 11 13 14 15 16 17 18, , , , , , , , , , , ,PD x x x x x x x x x x x x x x

α

+ =

, ( ) { }17 7 9 17 20, , ,PD x x x x x
α

+ = ,  
( ) { }18 1 7 9 10 11 15 17 18 20, , , , , , , ,PD x x x x x x x x x x

α

+ = ,  
( ) { }19 1 7 9 10 11 15 17 18 19 20, , , , , , , , ,PD x x x x x x x x x x x

α

+ = ,  
( ) { }20 20PD x x

α

+ = . 
Let { }3 7 9 13 17 19, , , , ,X x x x x x x=  which is the same as that in 
Example 1, and then the lower and upper approximations 
of X are: 

( )( ) { : D X}PR X x U x
αα

≤ += ∈ ⊆ =Φ ;  

( )
1 2 3 4 6 7 9 13

14 16 17 18 19

( ) { : D X }

{ , , , , , , , ,

, , , , } ( )

PR X x U x

x x x x x x x x

x x x x x R X

α
α
≤ +

≤

= ∈ ∩ ≠ ∅ =

⊃

.  

It is obvious that, after extending the concept of domin-
ance relation, the upper approximation set becomes larg-
er than that in Example 1. Consequently, the number of 
rules extracted from the approximations also becomes 
larger which means more objects can be covered by these 
rules. Since  

( )
( )P

x R X
D x U

≤ α
α

+

∈
∪ = , all the objects in U can be covered by 

the extracted rules. In Example 1, however, only 50% 
objects can be covered due to the strict definition of clas-
sical dominance relation. 

4. Properties of the Extended Dominance 
Relation 
All the properties of classical dominance relations and 
approximations still hold in the extended counterparts as 
follows: 
   (1) ( ) ( ) , ( ) ( ) ;R U R U U R Rα αα α

≤ ≥≤ ≥= = ∅ = ∅ = ∅  

   (2) ( ) ( ), ( ) ( );R X X R X R X X R Xα αα α

≤ ≥≤ ≥⊆ ⊆ ⊆ ⊆  
   (3) 

( ) ( ) ( ), ( ) ( ) ( );R X Y R X R Y R X Y R X R Yα α α α α α
≤ ≤ ≤ ≥ ≥ ≥∩ = ∩ ∩ = ∩  

   (4) 
( ) ( ) ( ), ( ) ( ) ( );R X Y R X R Y R X Y R X R Yα α α α α α

≤ ≤ ≤ ≥ ≥ ≥
∪ = ∪ ∪ = ∪    

(5) (~ ) ~ ( ), (~ ) ~ ( );R X R X R X R Xα αα α

≤ ≥≤ ≥= =  
   (6) ([ ] ) [ ] , ([ ] ) [ ] .i P i P i P i PR x x R x xα α

≤ ≥≤ ≤ ≥ ≥= =  
These results can be directly obtained according to Defi-
nitions 4-6, and we omitted the proofs. 

5. Conclusions 
In dynamic environment, information is constantly up-
dated, and how to effectively deal with this kind of in-
formation system is an important topic. In this paper, we 
proposed an incremental approach for updating the ap-
proximations of VPRS model based on dominance rela-
tions under the variation of the object set. We gave de-
tailed theoretical results with proofs and a numerical ex-
ample to support our incremental method. One of our 
future work is to conduct some experiments with real 
datasets and consider the variations of attribute sets. 
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