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A Novel Low-dimensional Modeling 
Method for Control of Unknown 

Nonlinear Distributed Spatial Processes 
Xiangping CAO, Yan CHEN 

Hunan Technical College of Railway High-Speed, Hengyang, CHINA 
 

Abstract: Data-based low-dimensional modeling for control design of nonlinear distributed spatial processes 
is necessary because there are usually some unknown uncertainties in first-principles modeling. In this paper, 
a novel low-dimensional modeling method is proposed for nonlinear distributed spatial processes. New dis-
crete basis functions are generated according to linear combination of empirical eigen functions from empiri-
cal orthogonal function analysis(EOF). A low-dimensional model is identified by traditional identification 
techniques for the corresponding temporal dynamics. Thus, the nonlinear spatio-temporal dynamics of un-
known distributed spatial processes can be reconstructed by synthesizing new discrete basis functions and the 
obtained low-dimensional model. The numerical simulations show that the proposed method has evidently 
better performance than that empirical eigen functions based modeling. 

Keywords: Nonlinear Distributed Spatial Processes; Low-dimensional Modeling; Empirical Orthogonal 
Function Analysis; Linear Combination; Identification 

 
1. Introduction 
Theirinfinite-dimensionalspatio-
temporalcouplingandcomplexnonlinearbehaviorof distri-
buted spatial processes make modeling, system analysis, 
numerical simulation and control design very difficult. In 
practice, a low-dimensional model results in the feasible 
implementation for control of the nonlinear distributed 
spatial processes. When the first-principles-based partial-
differential-equation (PDE) model of distributed spatial 
processes is known, there are many approaches to model 
reduction and control problems[1,2].Traditional methods 
such as finite-difference method (FDM) and finite-
element method (FEM) can be easily applied to discreti-
zation of the PDEs, and lead to high-order ordinary diffe-
rential equations (ODE).Under some conditions, a low-
order ODE model also may be possible obtained by using 
Galerkin method, collocation method and the approx-
imate inertial manifold method [2,3].However, the PDE 
modelo f distributed spatial processes is often unknown 
in many situations because of incomplete process know-
ledge; thus, data-based spatio-temporal modeling from 
the input and output data has to be used. Recently, the 
identification of nonlinear distributed spatial processes 
has been studied widely[4]. 
With the difference in spatial information processing, the 
spatio-temporal dynamical identification for distributed 
spatial processes can be classified as local and global 
approaches currently. The local method assumes that the 
local dynamics is determined by the neighborhood of the 

identified spatial location. Utilizing the measurements at 
small spatio-temporal regions, local models can be estab-
lished, based on the identification theory of the lattice 
dynamical system [5]. The dimension of the obtained 
model is high because it is determined by the number of 
spatial locations. 
Alternatively, the idea of the global approach comes 
from the Fourier series expansion[6]. A spatio-temporal 
variable can be expressed by an infinite number of basis 
functions 1{ ( )}i ixϕ ∞

= : ( ) 1
, ( ) ( )i ii

Z x t x z tϕ∞

=
= ∑ , where 

( )( 1, , )i x iϕ = ⋅⋅⋅ ∞  represents the spatial frequencies from 
low to high order and ( )( 1, , )iz t i = ⋅⋅⋅ ∞  denotes the cor-
responding temporal coefficients (states).Once the spatial 
basis functions are selected, the corresponding states can 
be determined by projecting the spatio-temporal data 
onto the spatial basis functions. Many traditional ap-
proaches, such as the nonlinear state-space model[6], the 
nonlinear auto regressive with exogenous in-
put(NARX)model[7,8], the Volterra model[9],the Wiener 
model[10], the Hammerstein models[11], Neural Net-
work[12] and the least-squares support-vector-
machine(LS-SVM)[13], are used to model the input-state 
dynamics. However, modelingaccuracyandefficiencyi-
shighlydependentonthechoiceofbasisfunctionssuchasfi-
nite-elementbases[7], Fourier series[6], Legendre poly-
nomials, Jacobi polynomials, and Chebyshev polyno-
mials[14]. 
In particular, empirical orthogonal function analysis 
(EOF), or proper orthogonal decomposition (POD), is a 
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popular approach to find the principal spatial structures 
and reducing the dimension of the data. The amount of 
variance of a system represented by the leading empirical 
eigen functions is often taken as an indication of the 
quality of a reduced model using those first several em-
pirical eigen functions. However, past studies [15,16], 
have pointed out that empirical eigen functions-based 
models can have difficulties reproducing behavior domi-
nated by irregular transitions between different dynami-
cal states. For this reason, there are many nonlinear me-
thod[8] to transform the high-dimensional spatio-
temporal data into a low-dimensional time domain. How-
ever, these approach need more computation cost for the 
low-dimensional modeling of nonlinear distributed spa-
tial processes. 
The present study derives a new low-dimensional model-
ing method is proposed for unknown nonlinear distri-
buted spatial processes. The spatio-temporal output of the 
system is measured at a finite number of spatial locations, 
and the input is finite-dimensional temporal variable with 
certain spatial distributions. New discrete basis functions 
are generated according to linear combination of empiri-
cal eigen functions from EOF. The low-dimensional 
model is obtained by identification of traditional identifi-
cation techniques for the corresponding temporal dynam-
ics. Thus, the nonlinear spatio-temporal dynamics of dis-
tributed spatial processes can be reconstructed by synthe-
sizing new empirical basis functions and dynamics of the 
obtained low-dimensional model. The numerical simula-
tions show that the proposed method has evidently better 
performance than that empirical eigen functions based 
modeling. 

2. Empirical Eigen Functions based Model-
ing 
This study focuses on the global method of the spatio-
temporal model identification for distributed spatial 
processes as shown in Figure 1.Generallyspeaking,this 
class of modeling approach follows three steps: selection 
of basis functions, time/space variable separation, and 
identification by traditional system identification tech-
nique for the input-state dynamics. 

 
Figure 1. Variables separation based modeling for 

nonlinear PDEs 

Consider the nonlinear distributed spatial processes in 
Figure 1. With ( ) mu t R∈  as the temporal input and 

( , )y x t R∈  as the spatiotemporal output, where x∈Ω  is 
the spatial variable, Ω  is the spatial domain, and 

[0, )t∈ ∞  is the time variable. For simplicity, suppose 
that the distributed spatial processes is controlled by m  
actuators with implemented temporal signal ( )u t  and a 
certain spatial distribution. The output is measured at the 
M spatial locations 1 2, , , Mx x x⋅ ⋅ ⋅ . In this modeling prob-
lem to identify a proper spatio-temporal model from the 
input 1{ ( )}L

tu t = and output ,
1, 1{ ( , )}M L

i i ty x t = = , where L  is the 
total time duration. In order to derive new empirical basis 
functions for model reduction of distributed spatial 
processes, EOF is used for time/space separation from 
measured spatio-temporal output to obtain the empirical 
eigen functions and the corresponding temporal coeffi-
cients.  
For simplicity, as sume that the process output 

,
1, 1{ ( , )}M L

i i ty x t = =  (called snapshots), is uniformly sampled in 
time and space. Define the inner product, norm, and en-
semble average as [ ( ), ( )] ( ) ( )f x g x f x g x dx

Ω
= ∫ ,

1/2( ) [ ( ), ( )]f x f x f x= , and 

1
( , ) (1/ ) ( , )L

t
f x t L f x t

=
< >= ∑ . 
Motivated by Fourier series, the spatiotemporal variable

( , )y x t can be expanded on to an infinite number of or-
thonormal spatial basis functions 1{ ( )}i txϕ ∞

=  with tempor-
al coefficients 1{ ( )}ty t ∞

=  

( ) ( ) ( )
1

, i i
i

y x t y t xϕ
∞

=

= ∑                       (1) 

Because of the spatial basis functions are orthonormal, 
the temporal coefficients can be computed from the fol-
lowing equation. 

( ) ( ) ( )[ , , ], 1, 2, ,i iy t x y x t iϕ= = ⋅⋅⋅ ∞         (2) 
In practice, the expression has to be truncation to a finite 
dimension. 

( ) ( ) ( )
1

,
M

M i i
i

y x t y t xϕ
=

= ∑                      (3) 

The ( , )My x t  denote the M -order approximation. 
The main problem of using EOF for time/space separa-
tion is computing the most characteristic spatial structure 

1{ ( )}M
i ixϕ =  among the spatio-temporal output 

,
1, 1{ ( , )}M L

i i ty x t = = . This typical structure can be found by 
minimizing the objective function 

( )
( ) ( )

( )

2
min , ,

, 1, 1, ,
i

Mx

i i

y x t y x t

subject to i M
ϕ

ϕ ϕ

−

= = ⋅⋅⋅
           (4) 
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The orthogonal constraint is imposed to ensure that the 
function ( )i xϕ  is unique. The Lagrangian function alcor-
responding to this constrained optimization problem is 

( ) ( ) ( )2

1
, , , 1

M

M i i i
i

J y x t y x t λ ϕ ϕ
=

= − + −  ∑      (5) 

And the necessary condition of the solution can be ob-
tained as  

( ) ( ) ( ) ( ), , , 1, 1, ,i i i i iD x x d x i Mζ ϕ ζ λϕ ϕ ϕ
Ω

= = = ⋅⋅⋅∫     (6) 

Where ( , ) ( , ) ( , )D x y x t y tζ ζ=< >  is the spatial two-
point correlation functions. ( )i xϕ is the ith eigen function, 
and the iλ  is the corresponding eigen function eigen val-
ue. Given that the covariance matrix D  is symmetric and 
positive definite, its eigen values iλ  are real, and its ei-
genvectors ( ), 1, 2, ,i x i Mϕ = ⋅⋅⋅ form an orthogonal set. 
Since the data are always discrete in space, one must 
solve numerically the integral Eq.(6). Discretizing the 
integral equation gives a M M×  matrix eigen value 
problem. Thus, at most  M eigen functions at M sam-
pling spatial locations can be obtained. 
The maximum number of nonzero eigen values is 

min( , )N M L= . We arrange the eigen values

1 2 Nλ λ λ> > ⋅⋅⋅ > and the corresponding eigen func-

tions 1 2( ), ( ), , ( )Nx x xϕ ϕ ϕ⋅⋅⋅ , in order of the magni-
tude of the eigen values. Each eigen function has an 
energy percentage which depends on the associated eigen 
values of the eigen functions 

k
kF

F
λ

=                              (7) 

where
1

N

i
i

F λ
=

= ∑  denotes the sum of the eigen values of 

the covariance matrix. Assuming that the eigen values 
are sorted in descending order, the eigen functions are 
ordered from most to least energetic. 
In general, an expansion in terms of only the first few 
temporal coefficients 

( ) ( ) ( )
1

,
N

N i i
i

y x t y t xϕ
=

= ∑                   (8) 

can be used to represent the dominant dynamics of non 
linear PDEs. 

3. The Calculation of New Discrete Basis 
Functions 
The new empirical basis functions are derived by the 
linear combinations from initial empirical eigen functions 
as follows ( )n N< . Each new empirical basis function is 
a linear combination of initial empirical eigen functions, 
which can be given as follows: 

1
, 1, 2, ,

N

i ji j
j

S i nφ φ
=

= = ⋅⋅⋅∑                     (9) 

which can be rewritten as  
( ) ( ) ( ){ } ( ) ( ) ( ){ }1 2 1 2, , , , , ,n Nx x x x x x Sφ φ φ ϕ ϕ ϕ⋅⋅⋅ = ⋅⋅ ⋅ (10) 

where 1 2{ ( ), ( ), , ( )}nx x xφ φ φ⋅⋅⋅  and 

1 2{ ( ), ( ), , ( )}Nx x xϕ ϕ ϕ⋅⋅⋅  denote the new empirical basis 
functions and initial empirical eigen functions respective-
ly, S denote the matrix of coefficients.  
The calculations of coefficient matrix are very crucial 
that heavily influences the performance of new empirical 
basis functions based modeling. In this subsection, an 
algorithm to obtain the coefficient matrix by balancing of 
empirical gramians [17,18] is present. The approach cal-
culates empirical gramians from the corresponding tem-
poral data of the initial empirical eigen functions with 
different excited temporal signals. In the identification of 
nonlinear distributed spatial processes, the excited signals 
can be imposed on the distributed spatial processes and 
the corresponding spatial-temporal output can be meas-
ured. Thus, the corresponding temporal data can be de-
rived using a time/space separation based on initial em-
pirical eigen functions. These gramians are then balanced 
by the same procedure as is used for linear systems. The 
balancing transformation is used within a Galerkin pro-
jection in order to transform the empirical gramians into 
balanced form.  
Let { }1 2, , ,N

rT T T T=   be a set of r  orthogonal N N×  
matrices, where r  denotes the number of matrices for 
excitation/perturbation directions; Let 

{ }1 2, , ,s
sM c c c=   be a set of s  positive constants, 

where s  denotes the number of different excita-
tion/perturbation sizes for each direction; Let 

{ }1 2, , ,P
PE e e e=   be P  standard unit vectors in PR , 

where P  denotes the number of  inputs to the system (9) 
for Definition 1 and Definition2.Given a function ( )v t , 
define the mean ( )v t  by 

( )
0

1( ) lim
T

T
v t v t dt

T→∞
= ∫                   (11) 

Definition 1: Discrete Empirical Control lability Gramian: 
Let NT , sM  and PE  be given sets as described above, 
where N  is the number of states. For system (7), the 
discrete empirical controllability gramianis defined by 

2
1 1 1 0

1ˆ
Ntimpr s

ilm
C k k

l m i km

W t
rsc= = = =

= Φ ∆∑∑∑ ∑               (12) 

Where ilm N N
k

×Φ ∈ℜ  is given by  

( )( )Tilm ilm ilm ilm ilm
k k kx x x xΦ = − −          (13) 
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and ilm
kx  is the corresponding temporal variable at the 

step k corresponding to the  input ( ) ( )m l iu k c T e kδ=  
at the certain locations, Ntim  is the number of step of the 
sampling for distributed spatial processes. 
Definition 2:Discrete Empirical Observability Gramian 
Let NT , sM  and PE  be given sets as described above. 
For system (7), the discrete empirical observabilitygra-
mianis defined by 

2
1 1 0

1ˆ
Ntimr s

lm T
O l l k

l m km

W T T t
rsc= = =

= Ψ ∆∑∑ ∑                (14) 

Where lm N N
k

×Ψ ∈ℜ  is given by  

( ) ( )Tlm ilm ilm jlm jlm
k ij k ky y y yΨ = − −               (15) 

and ilm
ky  is the temporal output variableon the measured 

locations at the step k corresponding to the initial condi-
tion 0 m l ix c T e= , Ntim  is the number of step of the sam-
pling for distributed spatial processes. 
The empirical control lability gramian and empirical ob-
servability gramian are computable generalization of 
controllability gramian and observability gramian to non-
linear systems, which can be calculated from the process 
data. A simple numerical technique for balancing the 
empirical gramians ˆ

cW  and ˆ
OW  is as follows [17]. First, 

apply the Cholesky factorization [19] to ˆ
OW  so that 

ˆ T
OW ZZ= , with Z  lower triangular with non-negative 

diagonal entries. Let 2 TU UΣ be a eigenvalue decomposi-

tionof ˆTZ WcZ , and let 1/2 1TS U Z −= Σ . Then 
1 1ˆ ˆ( )T TSWoS S WcS− −= = Σ  

The columns of S  may be thought of as giving the mod-
es of the system associated with the Hankel singular val-
ues in Σ . To derive a superior set of new spatial basis 
functions, the first n  columns of matrix S  of balancing 
of the empirical gramians is selected to be a N n×  spa-
tial basis functions transformation matrix. Using the 
MATLAB style colon notation, transformation matrix

( ):,1:S S n= . 

4. New Empirical Basis Functions based 
Neural Modeling 
In the Galerkin method, obtaining an exact analytical 
description of the low-dimensional ODE systems is im-
possible because of the unknown nonlinearities in the 
nonlinear partial differential equations. Therefore, the 
neural network can be used to identify the long-term dy-
namical behaviors from the input and corresponding 
temporal coefficients of new empirical basis functions. 
For model identification by the neural network, new em-
pirical basis functions are used to time/space separation 
for the spatio-temporal output ,

1, 1{ ( , )}M L
i i ty x t = = , the cor-

responding temporal coefficients are calculated using the 
generalized inverse matrix based on the following 
Eq.(24). 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

( )

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 1 1 1 2 1

2 1 2 2 2 2 1 2 2 2
1 2

1 2 1 2

, , ,
, , ,

, , ,

, , ,

L L

L L
n

m m m L n n n L

y x t y x t y x t y t y t y t
y x t y x t y x t y t y t y t

y x t y x t y x t y t y t y t

φ φ φ

   
   
   = ⋅⋅ ⋅   
      
   

 

 

       

 

                         (16) 

Using temporal signal ( )u t and the temporal coefficient
( )y t , a feed forward neural network is employed to iden-

tify the dynamics. 
( ) ( ) ( )( )ˆ ˆ1 ,y k NN y k u k+ =                      (17) 

The advantage of the neural networks is its ability to 
model complex nonlinear relationships without any as-
sumptions on the nature of these relationships. The most 
often used neural networks include the radial basis func-
tion networks, back propagation (BP) neural networks, 
among others. The present study employs a feed forward 
BP neural network to construct low-dimensional substi-
tute model for the dominant dynamics. The prediction 
output of nonlinear distributed spatial processes is ob-
tained by synthesis of temporal predicted output and new 
empirical basis functions: 

( ) ( )
1

ˆ ˆ,
n

i i
i

y x k y k φ
=

= ∑                      (18) 

5. Numerical Simulations 
Suppose that ( , )y x t and ˆ( , )y x t are the measured output 
and the predicted output at the M spatial locations 

1 2, , , Mx x x⋅ ⋅ ⋅  and some sampling time 1 2, , , Lt t t⋅ ⋅ ⋅ , respec-
tively. For an easy comparison, the root of mean squared 
error (RMSE) is set up as the performance indexas fol-
lows. 

( ) ( )( )2

1 1

ˆ, ,
M L

i j i j
i j

RMSE y x t y x t ML
= =

= −∑∑        (19) 

To evaluate the performance of the proposed kind of em-
pirical basis functions for model reduction, the rescaled 
Kuramoto-sivashinsky (K-S) equation in one space di-
mension is considered. The K-S equations is one of a 
typical partial differential equations, which has first been 
derived in 1976 by Kuramoto and Tsuzuki as a model 
equation for interfacial instabilities in the context of an-
gular phase turbulence for a system of a Reaction-
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diffusion equation that model the Belouzov-Zabotinskii 
reaction in three space dimensions, and independently, in 
1977, by Sivashinsky to model thermal diffusion instabil-
ities observed in laminar Mame fronts in two space di-
mensions. 

( ) ( )
24 2

4 2
1

14 0
2

m

i i
i

T T T T b x u t
t xx x

α
=

 ∂ ∂ ∂ ∂ + + + + =  ∂ ∂∂ ∂    
∑  (20) 

where 84.25α = ; ( ) [ 3 / 4 ( 1) / 2]ib x x iδ π π= + − − ; 
4m = . 

The Eq.(20) is subject to periodic boundary condition 
( )( , ) 2 , 0T x t T x tπ= + =               (21) 

and temporal inputs 
1 2 3 4[ ( ), ( ), ( ), ( )]

[4cos( / 5), 4sin( / 5),5cos( / 4),5sin( / 4)]
u t u t u t u t

t t t t
=

     (22) 

The initial condition is set to be sin x .The sampling in-
terval t∆  is 0.001s and the simulation time is 0.5s. Due 
to the infinite-dimensional feature, sufficient sensors 
should be used to measure the representative spatial fea-
tures of the distributed parameter system, which depend 

on the required modeling accuracy. In this case, forty-one 
sensors uniformly distributed in the space are used for 
measurement. A noise-free dataset of 500 data is col-
lected from (20).This size of data set used for training 
may be determined by the system complexity and the 
desired modelling accuracy. More complex system and 
higher modelling accuracy may need moredata. A new 
set of 100 data is collected for testing to compare the 
performances of two kinds of spatial basis functions. The 
spatio-temporal output of the K-S equation on testing 
data can be estimated from the synthesis of the temporal 
approximate model and empirical basis functions.  
In order to demonstrate the modeling performance of the 
proposed method, the comparisons for the reduced mod-
els using two kinds of spatial basis functions on the test-
ing data aregiven. The simulations show that three new 
empirical basis functions together with a 3-order network 
are able to denote the dominant spatial-temporal dynam-
ics of the K-S equation. The first three new empirical 
basis functions and the first three initial empirical eigen-
functions are respectively shown in Figure.2 and 3. 

 
Figure 2. The first three empirical eigenfunctions 

 
Figure 3. The first three initial empirical eigenfunctions 
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Figure 4. Distributed error based on three new empirical basis functions 

 

Figure 5. Distributed error based on threeinitial empirical eigenfunctions 

 
Compared with the testing data, the predicted distribution 
errors based on two kinds of empirical basis functions are 
shown in Fig. 4 and Fig.5, respectively. And the RMSEs 
of the approximate model based on the 3 new empirical 
basis functions and 3 initial empirical eigen functions are 
0.0565 and 0.0728, respectively. The results have shown 
that the performance of new empirical basis functions 
based modeling for nonlinear distributed spatial 
processes is superior to that of initial empirical basis 
functions based modeling with the same order. 

6. Conclusions 
In this paper, a new low-dimensional modeling method 
was proposed for data-based modeling of unknown non-
linear distributed spatial processes. New empirical basis 
functions were generated according to linear combination 
of empirical eigen functions. A low-dimensional model 
was identified by traditional identification techniques for 
the corresponding temporal dynamics. Thus, the nonli-
near spatio-temporal dynamics of distributed spatial 

processes could be reconstructed by synthesizing the new 
discrete basis functions and the obtained low-
dimensional model. The numerical simulations showed 
that the proposed method has evidently better perfor-
mance than that empirical eigen functions based model-
ing directly for unknown distributed spatial processes.  
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