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Abstract: The modeling goal is to instruct the person in bath to maintain a constant water temperature simul-

taneously minimizing the water consumption. Three sub-models: the heat-transfer model for determining the 

optimal shape of bathtub, the time-space-based temperature field model to seek the distribution of the temper-

ature field, a minimum water flow optimization model are applied to output the best strategy. In model one, 

the innovative “line-plane-space” approach is invoked to describe the process of heat dissipation inside the 

bathtub system. For various shape corresponds with different dissipation rate, the optimal shape of bathtub de-

termined is oval. In model two, we simplify the process of water flowing from the faucet heating the tub into 

the problem of point heat source heating medium. Then the unsteady heat conduction differential equation is 

given via Fourier transform and finally apply the difference method and multigrid method to obtain the distri-

bution of temperature field. Model three is the optimization model targeting the minimum water flow with the 

constraint condition guaranteeing the even water temperature. By involving the global search algorithm, the 

optimal water flow is output as 0.0028 2m s . 

Keywords: Heat-transfer; Time-space-based temperature field; Minimum water flow optimization 

 

1. Introduction 

Although a spa-style tub with heated water features is a 

luxury enjoy, most modern bathtubs we use today are 

ordinary ones that have overflow and waste drains and 

may have taps mounted on them. Since we need repeat-

edly let some of the cooled water out and refresh the tub 

with warm water, if we can practically instruct people to 

keep an evenly maintained temperature throughout the 

bathing via our study, it makes sense for a significant 

improvement to our life quality. 

We are required to build a mathematical model to pro-

vide a optimal strategy for the bather to keep an oven 

bath temperature. We decompose the problem into three 

sub-problems Determining the optimal shape of bathtub, 

Seeking the distribution of the temperature field. Con-

structing the minimum water flow optimization model. 

2. Model One 

The Heat-Transfer Model to Determine the Optimal 

Shape of Bathtub 

We analyze that the reason why the bathtub water gets 

colder is the heat transfer. Heat transfer is the exchange 

of thermal energy between physical systems, depending 

on the temperature and pressure, by dissipat-

ing heat[1]. Our main consideration is that the shape of 

bathtub will impact a lot on the heat transfer process. 

Thus, if we can first determine the shape of bathtub that 

goes against heat dissipation, it will simplify our later 

work. 

We initially intended to define the “optimal” from two 

aspects:1) the “heat transfer rate” and 2) the comfort de-

gree of human in bath. Then we could make a compre-

hensive evaluation via an AHP model. Unfortunately, we 

failed to get valid data support to acquire the comfort 

degree feedback from bathtub users. However, we can 

see that the impact of comfort degree can be ignored 

compared with the main need to keep an even tempera-

ture.  

Thus, we invoke an innovative accept “heat transfer rate” 

as the only criterion to determine the optimal shape. It 

refers to the amount of heat in unit time, which we de-

note as  . The smaller the value of the heat transfer rate 

  , the better the shape of bathtub will be. 

we first introduce some Terminologies as follows: 

Thermal conduction: The transfer of internal energy by 

microscopic diffusion and collisions of particles or quasi-

particles within a body or between contiguous bodies [2]. 

Convective heat transfer: the transfer of heat from one 

place to another by the movement of fluids [3]. 

Thermal radiation: electromagnetic radiation generated 

by the thermal motionof charged particles in matter[4].  

According to the heat-transfer principle, three fundamen-

tal ways for heat to transfer are conduction, convection 

and radiation. We can exclude the thermal radiation for 

https://en.wikipedia.org/wiki/Thermal_energy
https://en.wikipedia.org/wiki/Temperature
https://en.wikipedia.org/wiki/Pressure
https://en.wikipedia.org/wiki/Dissipation
https://en.wikipedia.org/wiki/Dissipation
https://en.wikipedia.org/wiki/Heat
https://en.wikipedia.org/wiki/Internal_energy
https://en.wikipedia.org/wiki/Diffusion
https://en.wikipedia.org/wiki/Electromagnetic_radiation
https://en.wikipedia.org/wiki/Thermal_motion
https://en.wikipedia.org/wiki/Charged_particles
https://en.wikipedia.org/wiki/Matter
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its slight impact and complex process based on a pre-

vious article [5].As we assume that the bathtub is isotrop-

ic, the heat flux inside the tub won’t impact the non-

uniformity. And for this specific problem, we must add 

another aspect: water evaporation off the surface.  

Thus, we further classify these three approaches for heat-

transfer into two types. The thermal conduction is as the 

internal while the convective heat transfer and water eva-

poration are integrate as the external approach for heat 

dissipation. We illustrate our analysis in the flow chart 

Fig.1 below. 

2.1. The heat loss from thermal conduction 

Our modeling process is developed from local to the 

whole based on the Fourier's Law .we show our Line-

Plane-Space procedure in Fig.2. 
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Figure 1. Analysis process of heat transfer 

 

Figure 2. The evolution process based on our Line-Plane-Space thoughts.( (a) is the cross section of the tub;(b) is the locally 

enlarged plane; and(c) is the expanded space) 

Step 1: Line  

For the bathtub, the thermal conductivity of Water and 

walls only happens in the vertical direction of the side 

walls. Thus, the conduction process can be described by 

the one-dimensional Fourier's differential equation[6]:  

 p

T
c k T Q

t



  


                  (1) 

Where 2 denotes the Laplace operator, PC denotes the 

specific gravity, T denotes the temperature of wa-

ter,  denotes the density of water, Q denotes the heat 

input, and k denotes the flow rate. 

Next, we consider the boundary conditions. Boundary 

conditions are the representation of the thermal energy 

balance at the bounding surface of the material. They 
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measure heat exchange interactions between the material 

and its surroundings in
2w m . Common heat exchange 

mechanisms are convection[7]. 

  2 1 Qconv h t t                (2) 

Where h is the heat transfer coefficient( 2/w m ) and is the 

bulk temperature of the surrounding environment. 

The differential equation of heat conduction together 

with the boundary conditions constructs the complete 

mathematical description of the specific conduction 

process. 

Step 2: Plane 

Following step one, we model Figure 2.b as follows: 

 

2

2

1 2 1

0,

(t t ) (x/ L)

d t

dx

t t



   

                   (3) 

Where t  represents the temperature of the side walls, 1t  

represents the air temperature. 2t is the water temperature, 

L  is the thickness of side walls, and x  is the heat coor-

dinate point. 

Step three: Space 

At last, we consider the thickness and area in Fig2. (c), 

we can get: 

1 2 1(t ) (x/ L),

/ ,

,

t t t

R L k

S t
Q

R


    



 
 


                    (4) 

Where R  is the percentage of the heat, and Q  is the heat 

input. 

2.2. The heat loss from thermal convection and water 

evaporation 

Thanks to a previous article[8], incorporating each of two 

components into a single model yields the following equ-

ation: 

0

0

''

0

,

(t ) ,

(P P ) ,

= ,
0.623L

P v v

p

dQ dQ L dG

dQ dF

dG dF

P C
b

 







  

 






 








                       (5) 

Where L is the heat of vaporization,  is the thermal dif-

fusivity, t   is the water surface temperature( o C ),  is 

the dry bulb temperature( o C ) F  is the vapor contact 

area( 2m ), 
p  is the bulk transfer coefficient, P is the 

atmospheric pressure. 

2.3. Ultimate expression of heat transfer rate   

On the basis of its definition, the heat transfer rate   is : 

 0= = t G
Q Q Q Q

t t


 
           (6) 

Where 1Q  is the heat loss through heat conduction, 2Q  is 

through the convection, 3Q  is through the water evapora-

tion, and t  is the dissipation time. 

To solve the Equation 6 by MATLAB, we should invoke 

a shape conduction coefficient A  to consider the differ-

ent surface area. We set the complex oval and circle as 

1 20.8, 0.9A A   respectively. The model results calcu-

lated by MATLAB is shown as Fig.3 and Tab.1. 
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Figure 3. Heat loss process of three types of bathtub 

In Figure 3, the purple, green, blue curve represent the 

heat loss changing process of oval, circle, and rectangle. 

The oval is the lowest, thus, we can conclude the optimal 

type of bathtub is oval. 

 
Table 1. The table which contains the result of the different 

shape 

Shape Area rate 

Rectangular 3.36 0.7521 

Oval A1*3.36 0.7013 

Round A2*3.36 0.7363 

 

3. Model Two 

A Time-Space-Based Temperature Field Model 

Model two maps the temperature distribution of water in 

space and time based on the oval shape of bathtub deter-

mined by model one. 

What is time-space-based? In space: we consider every 

point of the bathtub water, they construct the space. In 

time: model two maps the temperature change of every 

point with time. Temperature field: it refers to the set of 

temperature distribution of each point in continuous me-

dium. In the three-dimensional Cartesian coordinate, 

Temperature field can be represented as temperature 
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 , , ,T f x y z t , and the one that varies with time is 

called unsteady temperature field. 

Inspired by an article [9], we modify the author’s model 

to account for the heat loss through the overflow drain in 

our specific circumstances. 

Let 0Q  be the heat emitted by a point source,  be the 

added temperature value in any position (x, y,z)P , any 

time t , and the Thermal conductivity   be a constant. 

We invoke eQ as the heat loss through an overflow drain. 

Set the origin at the heat source point, we have 

R xi y j zk  
   

,
2 2 2R x y z    . 

since the temperature distribution is symmetrical about 

the origin, the heating function R

( ,t) can be 

(R t) ，
. 

We can have the Equation (7) based on the law of con-

servation of energy. 

 
20

0
4 (R, t) + E

P P

Q Q
R dR

C C
 

 



                   (7) 

Where pC  is the specific gravity in Temperature 

field,  is the density of water. 

If pC ,  and R


 are irrelevant, we conduct the Fourier 

transform to Equation (7),then the value of added tem-

perature can be solved as follows: 
2

3
2

= exp( )
4(4 )

A R

tt



                       (8) 

We substitute Equation (8) with Equation (7), then get 

0 - e

p

Q Q
A

C 
 . Thus, the instantaneous warming formula in 

Infinite heat conductor can be written as: 

 
2 2 2

0

3
2

-Q
= exp( )

4(4 t)

e

P

Q x y z

tC


 

 
           (9) 

Ultimately, the expression of temperature at any point 

equals the initial temperature plus the added value, given 

by: 

 0Ri iQ Q                              (10) 

Since MATLAB can only solve the two-dimensional 

model, we conduct lowering the latitude to transfer the 

four-dimensional temperature field model into the two-

dimensional one. These parameters and boundary condi-

tions in Fig.4 and Fig.5 are regarded as the standard state 

of tests in this paper. 

 

Figure 4. The temperature field distribution of x-y plane 

 

Figure 5. The temperature field distribution of x-z plane 
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From Fig.4, we can see temperature in x-y plane reaches 

its peak in pouring source. The closer a point is near the 

boundary, the lower temperature is, and it is a continuous 

process. 

In Figure 5, we can see that x-z plane shares the same 

law with x-y plane in Fig.4. Thus, we can say the distri-

bution in three-dimensional space satisfy the law that A 

hot water pipe inlet temperature maximum, the most dis-

tant from the inlet temperature is the lowest, and is a con-

tinuous process, that is the temperature field has a conti-

nuous movement. 

In sum, we can conclude that although there is a conti-

nuous change in temperature, but in this oval tub in each 

area, temperature control in a smaller range, namely, 

after the hot water into the tub, the heat will quickly 

spread to the entire region and not stay in one position, 

namely transient temperature field with motion. 

4. Model Three 

The Minimum Water Flow Optimization Model 

Since the law of temperature distribution has been deter-

mined in model two, we can apply it as restrictions on 

keeping the temperature even and as close as possible to 

the initial temperature, simultaneously with minimum 

water consumption as objective function. Thus, the three-

fold optimization model achieves its mission to deter-

mine the best strategy. 

Since the article[10] tells the comfortable temperature for 

human ranges from 39
o

C  to 40
o

C , the constrain condi-

tion can be written as: 

 039 40iQ   ℃ ℃                   (11) 

Where 
iOQ  is the heats poured into the tub from the fau-

cet,   is the value of added temperature in model two, 

and 
2 2 2

0

3
2

-Q
= exp( )

4(4 t)

e

P

Q x y z

tC


 

 
 The relation 

between heat Q and flow f  is given in the article [11] 

as follows: 

0 0 0=

=
,

p

e e p e

Q f C T

Q f C T









                          (12) 

Where 
OQ represents the heats poured into the tub from 

the faucet in unit time, eQ represents the heats taken away 

through a overflow drain in unit time, 0f represents the 

water flow poured into the tub from the faucet in unit 

time, ef  represents hot water discharge weir flow in a 

unit time,   represents flow density of the water in 

pipe, PC represents specific heat capacity of the hot water 

in pipe, 0T represents The water temperature hot water 

pipes. 

We modify the equation to account for a significant heat 

loss when water flows from the faucet to reach the sur-

face. the improved equation is 
0 0 0= ,pQ f C T   Where 


 

is the Heat attenuation coefficient. 

Thus, the minimum water flow optimization model can 

be written as: 
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 (13) 

Where S is the pipe diameters, V is flow rate, 0iQ is the 

initial value of the temperature at any point, its value 

equals 0Q . Other symbols are described previously. 

Improved Model 

①Considering the shape of a person 

For the human body, the impact of the volume of the 

model we mainly consider a bath of water in thermal 

conductivity  and specific heat capacity
pC [12]. 

There are three kinds of body shape: fat, middle, thin . 

The main difference is that the proportion of the three 

organizations is not the same, so that people of different 

thermal conductivity
p and specific heat capacity 

ppC is 

not the same. 

     We can modify it by invoking: 

=p i i                          (14) 

Where 
p is the heat transfer coefficient, i is the class, 

and i  represents the heat transfer coefficient organiza-

tions. 

It’s true for human specific heat capacity
ppC ,we modify 

it as: 

pp pi iC C                           (15) 

Where 
ppC is the human specific heat capacity, 

piC is the 

class, i  represents the heat transfer coefficient organiza-

tions. 

②Considering the volume of a person 

The model assumes a bathtub is filled with water, when 

someone taking a bath in the tub, it can be written as : 

0w pV V V  (1) 

Where wV represents the volume of people,
pV  represents 

the volume of water in a bathtub, oV  is the volume of a 

bathtub. 

Applying Equation(16) to human, we can have: 
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p w

p w f

o o

p w

PP Pqw pf

o o

V V

V V

V V
C C C

V V

     

   

 (17) 

Where w  represents water heat transfer coefficient,
f  

represents the final bath medium heat transfer coefficient. 

③ The improved optimization model 

Based on the discussion above, the ultimate single-

objective optimization model after we take human into 

account will be: 

 

0 0 0
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=
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

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   ℃ ℃

               (18) 

What is determined above by the most primitive single-

objective optimization model, the constraints can be seen 

from the impact of the main results of the model parame-

ters internal and external factors, the initial model, can be 

considered an internal parameters are fixed, its main 

source of influence external factors. By changing the 

external conditions, the optimal solution can be obtained 

in different situations.  

The temperature field under this condition can be shown 

in Fig 6. 

In Fig6. As long as the water temperature at a certain 

time when the water injection tube, while maintaining a 

constant temperature boundary conditions, there is an 

optimal output, the minimum flow of water injection. 

Therefore we assign to initial water injection tube 70 ℃, 

the optimal solution for the model output 0.238
3 /m s . 

 

Figure 6. The temperature field distribution of x-y plane 

5. Conclusion 

Based on the sensitivity analysis in further study, the 

dependency degree of the model can be ranked as bub-

bles, shape of the person, shape of the tub, human motion 

and the volume of the tub. 
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