A Class of Unicyclic Graphs With The Extremal Kirchhoff Index

Shubo Chen, Xia Cai, Ting Zeng, Lihui Yang
College of Science, Hunan City University, Yiyang, 413000, China

Abstract

The Kirchhoff index $\operatorname{Kf}(\mathrm{G})$ is the sum of resistance distances between all pairs of vertices of the graph G, where the resistance distance between two vertices of a connected graph G is defined as the effective resistance between them in the corresponding electrical network constructed from G by replacing each edge of G with a unit resistor. In this paper, we shall determine a class unicyclic graph with extremal Kirchhoff index.

Keywords: Resistance distance; Kirchhoff index; Unicyclic graph

1. Introduction

All graphs in this paper are connected simple graphs. For any $v \in V(G), d(v)=d_{G}(v)$ is the degree of vertex v, the distance between vertices u and v, is denoted by $d(u, v)=d_{G}(u, v)$, is the length of a shortest path between them. Wiener index is the first recorded index, introduced by America chemist Harold Wiener in [1], defined as

$$
\begin{equation*}
W(G)=\sum_{\{u, v \subseteq V(G)\}} d(u, v) \tag{1}
\end{equation*}
$$

In 1993, Klein and Randic [2] introduced resistance distance on the basis of electrical network theory. They viewed a graph G as an electrical network N such that each edge of G is assumed to be a unit resistor. The resistance distance between the vertices u and v, are denoted by $r(u, v)=r G(u, v)$, is defined to be the effective resistance between nodes $u, v \in N$. The Kirchhoff index $\operatorname{Kf}(\mathrm{G})$ of a graph G is defined as $[2,3]$

$$
\begin{equation*}
K f(G)=\sum_{\{u, v \subseteq V(G)\}} r(u, v) \tag{2}
\end{equation*}
$$

If G is a tree, then $r(u, v)=d(u, v)$ for any two vertices u and v. Consequently, the Kirchhoff and Wiener indices of trees coincide.
The Kirchhoff index is an important molecular structure descriptor [4], it has been well studied in both mathematical and chemical literatures. References to recent studies are available from [5-10].
A graph G is called a unicyclic graph if it contains exactly one cycle, the unique cycle $\mathrm{Ck}=\mathrm{v} 1 \mathrm{v} 2 \cdots \mathrm{vkv} 1$ in a unicyclic graphs, simply denoted as
$\mathrm{G}=\mathrm{U}(\mathrm{Ck} ; \mathrm{T} 1, \mathrm{~T} 2, \cdots, \mathrm{Tk})$,
where Ti is the components of $\mathrm{G} . \mathrm{E}(\mathrm{Ck})$ containing vi, $1 \leq \mathrm{i} \leq \mathrm{k}, \mathrm{Ti}$ is a tree rooted at vi. Let $\mathrm{U}(\mathrm{n} ; \mathrm{k})$ be the set of unicyclic graphs with n vertices and the unique cycle Ck , $\mathrm{U}(\mathrm{n})$ be the set of unicyclic graphs with n vertices. In [11], H. Zhang et al., determined unicyclic graphs with
the maximal Kirchhoff index, and H. Deng et al. [12] obtained unicyclic graphs with the second maximal Kirchhoff index. X. Cai in [13] characterized unicyclic graphs with the second maximum Kirchhoff index.
In the paper we'll determine a class unicyclic graphs $\mathrm{U}(\mathrm{k}, 1, \mathrm{i})$, depicted in Figure 1, with extremal Kirchhoff index. The paper is organized as follows, in Section 2 we state some preparatory results, whereas in Section 3 we state our main results.

Figure .1. The Graph U(K,L,I).

2. Preliminary Results

For a graph G with $v \in V(G), G-v$ denotes the graph resulting from G by deleting v (and its incident edges). For an edge uv of the graph G (the complement of G, respectively), G-uv(G+uv, respectively) denotes the graph resulting from G by deleting (adding, respectively) uv.

$$
\begin{gather*}
\text { Let, } K f_{v}(G)=\sum_{u \in V(G)} r(u, v) \text { then } \\
\qquad K f(G)=\frac{1}{2} \sum_{v \in V(G)} K f_{v}(G) \tag{3}
\end{gather*}
$$

Let Ck be the cycle on $\mathrm{k} \geq 3$ vertices, for any two vertices $v_{i}, v_{j} \in V\left(C_{k}\right)$ with $\mathrm{i}<\mathrm{j}$, by Ohm's law, we have $r\left(v_{i}, v_{j}\right)=\frac{(j-i)(k+i-j)}{k}$. For any vertex $v \in V\left(C_{k}\right)$, it's suffice to see that $K f_{v}\left(C_{k}\right)=\frac{k^{2}-1}{6}$ $K f\left(C_{k}\right)=\frac{k^{3}-k}{12}$.

Let X be a cut vertex of a connected graph and A and B be vertices occurring in different components which arise upon deletion of X. Then:

$$
\begin{equation*}
r_{G}(a, b)=r_{G}(a, x)+r_{G}(x, b) \tag{4}
\end{equation*}
$$

Let G1 and G2 be two connected graphs with exactly one common vertex x, and $G=G_{1} \cup G_{2}$. Then

$$
\begin{align*}
& K f(G)=K f\left(G_{1}\right)+K f\left(G_{2}\right)+ \tag{5}\\
& \left(\left|G_{1}\right|-1\right) K f_{x}\left(G_{2}\right)+\left(\left|G_{2}\right|-1\right) K f_{x}\left(G_{1}\right)
\end{align*}
$$

Let $\mathrm{T}(1, \mathrm{i})$ be a tree depicted in Figure 2.
$\bar{u} \quad v_{1} \quad v_{2} \quad v_{i-1} \quad w_{i l+1} \quad-ー ー \square$

Figure .2. The Tree T(L,I)

As we'll need the Wiener index of both the star Sn and the path Pn on several occasions, we list the results in advance,
$W\left(S_{n}\right)=(n-1)^{2}, W\left(P_{n}\right)=\binom{n+1}{3}=\frac{1}{6} n\left(n^{2}-1\right) \mathrm{T}(1, \mathrm{i})$ be
the tree depicted in Figure 2, it's suffice to see that

$$
K f(T(l, i))=\binom{l+2}{3}+i^{2}-l i+\frac{1}{2}\left(l^{2}+3 l+2\right)=\frac{(l+1)(l+2)(l+3)}{6}+i^{2}-l i
$$

3. Main Results

Firstly, by Lemma 2.1, one has,
Theorem 3.1. Let $U(k, 1, i)$ be the graph depicted in Figure 1 , then
$K f(U(k, l, i))=\frac{k^{3}-k}{12}+\frac{1}{6}(l+1)\left[(l+2)(l+3)+k^{2}-1\right]+i^{2}-i l+(k-1)\left[\frac{1}{2} l(l+1)+i+1\right]$
Proof. By the formula (2.3), one has,
$K f(U(k, l, i))=K f\left(C_{k}\right)+K f(T(l, i))+(k-1) K f_{u}(T(l, i))+(l+1) K f_{u}\left(C_{k}\right)$

$$
=\frac{k^{3}-k}{12}+\frac{1}{6}(l+1)\left[(l+2)(l+3)+k^{2}-1\right]+i^{2}-i l+(k-1)\left[\frac{1}{2} l(l+1)+i+1\right]
$$

This completes the proof.
Nextly, we'll investigate the extremal Kirchhoff index of $\mathrm{U}(\mathrm{k}, \mathrm{l}, \mathrm{i})$.
Theorem 3.2. Let $G \in U(k, l, i)$, for the fixed k and l , where $\mathrm{k} \geq 3$, one has,
(i)
If
$k \geq l+1$
then
$K f(U(k, l, 1)) \leq K f(G) \leq K f(U(k, l, l-1))$
(ii) If
$l-1 \leq k \leq l+1$, then
$K f(U(k, l, 1)) \leq K f(G) \leq K f(U(k, l, l-1))$
(iii) If
$k \leq l-1$, then $K f(G) \leq K f(U(k, l, l-1))$ Proof. By

Theorem 3.1, one has,
$K f(U(k, l, i))=i^{2}-i(l+1-k)+\frac{k^{3}-k}{12}+\frac{1}{6}(l+1)\left[(l+2)(l+3)+k^{2}-1\right]+(k-1)\left[\frac{1}{2}(l(l+1)+1]\right.$
For $2 \leq i \leq l-1$, let $f(i)=i^{2}-i(l+1-k)+a$, By a simple reasoning, Theorem 3.2 holds.

It's easy to see that,
Corollary 3.1. Let $G \in U(k, l, i)$, for the fixed k and l , where $\mathrm{k} \geq 3$, one has,
$K f(G) \leq \frac{k^{3}-k}{12}+\frac{(l+1) k^{2}}{6}+\frac{k\left(6 l^{2}+18 l-1\right)}{12}+\frac{l^{3}}{6}+\frac{l^{2}}{2}-\frac{5 l}{6}+\frac{11}{6}$ with the equality holds if and only if $G \cong U(k, l, l-1)$.
Theorem 3.3[13]. Let $G \in U(k, l, l-1)$ and $k \geq 3$, then $K f(G) \leq \frac{1}{6}\left(l^{3}+12 l^{2}+31 l+32\right)$ the equality holds if and only if $G \cong U(3, l, l-1)$.

4. Acknowledgment

Projects supported by NSFC(Grant no. 11401192), Scientific Research Fund of Hunan Provincial Education Department (Grant no. 14A026, 15C0248), Natural Science Foundation of Hunan Province(Grant no. 2015JJ3031).

References

[1] H. Wiener, Structural determination of paraffinboiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
[2] D. J. Klein and M. Randc, Resistance distance, J. Math. Chem. 12 (1993) 81-95.
[3] D. Bonchev, A. T. Balaban, X. Liu, D. J. Klein, Molecular cyclicity and centricity of polycyclic graphs-I. Cyclicity based on resistance distances or reciprocal distances, Int. J. Quantum Chem. 50 (1994) 1-20.
[4] J. L. Palacios, Foster's Formulas via Probability and the Kirchhoff index, Methodology and Computing in Applied Probability. 6 (2004) 381-387.
[5] I. Lukovits, S. Nikolic, N. Trinajstic, Resistance distance in regular graphs, Int. J. Quantum Chem. 71(1999) 217-225.
[6] J. L. Palacios, Resistance distance in graphs and random walks, Int. J. Quantum Chem. 81 (2001) 29-33.
[7] Q. Guo, H. Deng, D. Chen, The extremal Kirchhoff index of a class of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 713-722.
[8] H. Zhang, X. Jiang, Y. Yang, Bicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem. 61(2009) 697-712.
[9] H. Deng, On the minimum Kirchhoff index of graphs with a given number of cut-edges, MATCH Commun. Math. Comput. Chem. 63 (2010) 171-180.
[10] R. Li, Lower bounds for the Kirchhoff index, MATCH Commun. Math. Comput. Chem., 70 (2013) 163-174.
[11] Y. Yang, H. Zhang, Unicyclic graphs with extremal Kirchhoff index, MATCH Commun. Math. Comput. Chem. 60 (2008) 107120.
[12] W. Zhang, H. Deng, The second maximal and minimal Kirchhoff indices of unicyclic graphs, MATCH Commun. Math. Comput. Chem. 61 (2009) 683-695.
[13] X. Cai, Z. Guo, S. Wu, L. Yang, Unicyclic graphs with the second maximum Kirchhoff index, South Asian J. Math., 4(2014) 181-184.

