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Abstract: This paper revises some trust-region methods equipped with non-monotone strategies for solving 

unconstrained optimization problems. Unlike the traditional non-monotone trust-region method, our proposed 

algorithm avoids resolving the sub-problem whenever a trial step is rejected. Instead, it performs a non-

monotone Armijo-type line search in direction of the rejected trial step to construct a new point. Theoretical 

analysis indicates that the new approach preserves the global convergence to the first-order critical points un-

der classical assumptions. 
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1. Introduction  

We consider the unconstrained minimization problem 

                   min ( )f x , subject to 2x R ,                     (1) 

where : nf R R  is a twice continuously differentiable 

function. 

For solving (1), trust region methods usually compute 

kd  by solving the quadratic sub-problem: 

       
1

min
2

T T

k k k km d f g d d B d              (2) 

where  k kf f x ,  k kg f x , kB is the exact Hes-

sian  2

k kG f x , or a symmetric approximation 

for it, 0k   is a real number called trust-region radius, 

and   denotes the Euclidean norm. Once the step d  is 

computed, the quality of the model in the trust-region is 

evaluated by a ratio of the actual reduction of objective, 

 k kf f x d  , to the predicted reduction of model, 

   0k km m d , i.e., 

                           
 

 0 ( )

k k

k

k k

f f x d
r

m m d

 



.                          (3) 

In particular, Armijo's line search satisfies 

                         T

k k k k k k kf x d f g d                 (4) 

where  0,1 2  , and 
k  is the largest  , ,...s s   

with 0s   and  0,1  such that (2) holds, see [9]. 

To improve the performance of Armijo's line search, 

Grippo et al. in 1986 [8] introduced a variant of Armijo's 

rule using the term 
 l k

f  in place of kf  in (4) defined by 

                      
   

 
0
max k jl k

j m k
f f 

 
 , 0,1,2,...,k           (5) 

where       0 0, min 1 1,m m k m k N     for posi-

tive integer N . It was shown that the associated scheme 

is globally convergent, and numerical results reported in 

Grippo et al. [10] and Toint [11] showed the effective-

ness of the proposed idea. Motivated by these results, the 

non-monotone strategies have received much attention 

during past few decades. For example, in 2004, Zhang & 

Hager in [12] proposed the non-monotone term 

  
0

1 1 1 /k
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f
C
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
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where 
min 1 max0 1k      . Mo et al. in [13] and 

Ahookhosh et al. in [3] studied the non-monotone term 

 
1 1

k
k

k k k k

f
D

D f 


 

 
if
if

1,
2,

k
k



 

where min max min max min[ , ], [0,1], [ ,1]k        . Re-

cently, Amini et al. in [7] proposed the non-monotone 

term 

   1k k k kl k
R f f    , 

where 
min max0 1     and min max[ , ]k   . 

M. Ahookhosh and S. Ghaderi in [2] proposed a novel 

non-monotone strategy based on a weighted average of 

former successive iterates. kT  is defined as follows 
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   1 1 1 11k k k k k k k N k NT f T f f             (6) 

where 

1 1

1 2 1 2 1 2 1

2 2

... ...k k

k k k k N k k N k N k

k N k N

 
       

 
 

         

   

  

. It is clear that the new term uses a stronger term 
( )l kf  

defined by (5) for first k N  iterations and then em-

ploys the relaxed convex term proposed above. 

The non-monotone techniques have changed the ratio (3). 

It defined as follows 

                            
 

 
ˆ

0 ( )

k k

k

k k

T f x d
r

m m d

 



,                          (7) 

After introducing the novel non-monotone term, we now 

state a new non-monotone trust-region algorithm with 

automatically adjustable radius based on the adjustable 

radius of Shi and Guo and the idea of the non-monotone 

strategy of Zhang and Hager. 

Zhang et al. [6] proposed an adjustable strategy to deter-

mine the trust-region radius based on information of 
kg  

and 
kB  in current iterate. The method exploits the fol-

lowing adaptive formula 1ˆkp

k k kg B    ,for updat-

ing the radius of the neighborhood in problem (2), in 

which  0,1  , 
kp  is a nonnegative integer, and 

ˆ
k kB B i    is a positive definite matrix for some i . 

Motivated by Zhang's strategy, Shi and Guo [4] proposed 

a new adaptive radius for the trust region method. They 

choose  , 0,1   and 
kq  to satisfy the following in-

equality 
T

k k

k k

g q

g q
 


with  0,1  , and set 

ˆ

T

k k

k T

k k k

g q
s

q B q
  ,in which ˆ

kB  is generated by the proce-

dure: 
2ˆT T

k k k k k k kq B q q B q i q  , and i  is the smallest 

nonnegative integer such that 
2ˆ 0T T

k k k k k k kq B q q B q i q   .So, they proposed a new 

trust region radius as follows 

                                 k k kq  ,                              (8) 

where kp

k ks  , and 
kp  is the least positive integer 

number so that 

                                      
k̂r  .                                  (9) 

This paper organized as follows. In Section 2, we de-

scribe the novel trust region line search algorithm and 

give its properties. In Section 3, we first prove that the 

new algorithm is well defined, and then the global con-

vergence is investigated. Finally, some conclusions are 

given in Section 4. 

2. Novel Trust-region line Search Algorithm 

Now, we have everything to describe our algorithm. We 

first solve the sub-problem (2) in order to compute the 

trial step 
kd  and then compute the ratio (7). If 

k̂r  , 

then we accept the trial step and set 
1k k kx x d   . Oth-

erwise, we determine the step-length  2, , ...k s s s    

by subsequent Armijo-type line search 

                          T

k k k k k k kf x d T g d    ,          (10) 

where s is a positive constant,  0,1   and  0,1 2  . 

In this case, we set
1k k k kx x d   . Now, we can outline 

our new non-monotone trust-region line search algorithm 

as follows: 

2.1. New Non-monotone Trust-Region Line Search 

Algorithm 

step1. An initial point 
0

nx R , a symmetric matrix 

0

n nB R   and initial trust-region radius 
0 0   are given. 

The constants 0 1  , 0 1  , 0 1 2  , 

min0 1   and 
min max 1   , 0N  , 0   and 

0   are also given. 

Compute  0f x  and set 0k  . 

step2. Compute  kg x . If  kg x  , stop. 

step3. Solve the sub-problem (2) to determine a trial step 

kd  that satisfies k kd  . 

step4. Compute 
kT  and 

k̂r . If 
k̂r  , set 

1k k kx x d    

and go to Step 5. Otherwise, find the step-length k
 

satisfying in (10), and set 1k k k kx x d   . Update the 

trust-region radius by  1 1min ,k k k kx x      and 

go to Step 6. 

step5. Set k k kq  . 

step6. Update the matrix 
1kB 
 by a quasi-Newton formu-

la, set 1k k   and go to Step 2. 

For convenience, we define two index sets as below, 

 ˆ: kI k r    and  ˆ: kJ k r   . 

The following assumptions are used to analyze the con-

vergence properties of Algorithm: 

(H1) The objective function f is continuously differenti-

able and has a lower bound on nR  and is uniformly con-

tinuous on open convex set   that contains the level set 

      0 0 0| ,n nL x x R f x f x x R    . 
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(H2) The sequence  kB  is uniformly bounded, i.e., 

there exists a constant 1 0M   such that 1KB M . 

(H3) There exists a constant 0c   such that the trial step 

kd  satisfies 
k kd c g . 

(H4) There exists a positive constant m  such that, for all 

nd R  and k N , we have
2 T

km d d B d . 

Remark 2.1 To establish strong theoretical results, it is 

supposed that the model  km d  decreases at least as 

much as a fraction of that obtained in Cauchy point, i.e. 

there exists 0 1   such that, for all 

k ,  0 ( ) min ,
k

k k k k

k

g
m m d g

B
 

  
   

  
and

min ,
kT

k k k k

k

g
g d g

B
 

  
   

  
. 

Remark 2.2 If  f x  is a twice continuously differentia-

ble function and the level set 
0( )L x   

is bounded, then (H1) implies that  2 f x  is uniform-

ly continuous and bounded on the open bounded convex 

set   that contains 
0( )L x . Hence, there exists a constant 

2 0M   such that  2

2kG f x M   and by 

using mean value theorem we 

have     2 , ,g x g y M x y x y     . 

The following results are required for establishing the 

global convergence of the algorithm in the next section. 

Lemma 2.1 ([4]) Suppose that the sequence  kx  be gen-

erated by Algorithm. Then, for all k , we 

have    
1

0 ( ) 0 ( )
2

T

k k k k k k k k km m d m m q g q      , 

where 
kd  is the optimal solution of the sub-problem (2) 

with respect to 
k ks  . 

Lemma 2.2 ([14]) Suppose that sequence  kx  is gener-

ated by Algorithm, 

then    2
( ) (0) ( )k k k k k k kf f x d m m d O d     . 

Lemma 2.3 ([2]) Suppose that the sequence  kx  is gen-

erated by Algorithm, then we get 

                             ( )k k l kf T f  ,                                (11) 

for all  0k . 

Lemma 2.4 Suppose that the sequence  kx  is generated 

by Algorithm. Then, for all  0k , we have 

0( )kx L x  and  ( )l kf  is a decreasing sequence. 

Proof. It is clear that 
0 0T f . By induction, we show that 

0( )kx L x , for all  0k . We assume that 

0( )ix L x , for 1,2,...,i k . We then prove that 

1 0( )kx L x  . To do so, we consider two cases: 

Case 1. k I : We have 

   (0) ( ) 0k k k k k k kT f x d m m d      . 

Case 2. k J : using (10) and Remark 2.1, we 

have   T

k k k k k k k kf x d T g d T     . 

These two inequalities along with (11) show that 

                          
1 ( ) 0k k l kf T f f    .                         (12) 

Thus, the sequence 
kx  is contained in 

0( )L x . 

Now, we prove that the sequence 
( )l kf  is a decreasing 

sequence. To this end, we consider two cases based on 

k I  or 1k J  . 

For k N , it is obvious that ( )m k k . Since, for any 

k , 0kf f  then we have 
( ) 0l kf f . 

For k N , we have ( 1) ( ) 2m k m k   . Thus, from the 

definition of 
( )l kf  and (11), we can write 

   
 

 
   1 ( ) 1 ( )1

0 1 0 1
max max max ,k j k j l k k l kl k
j m k j m k

f f f f f f   
     

   

. 

Both cases show that the sequence  ( )l kf  is a decreas-

ing sequence. 

Corollary 2.1 Suppose that (H1) holds and the sequence 

 kx  is generated by Algorithm. Then the sequence 

 ( )l kf  is convergent. 

3. Convergence Analysis 

In this section, we discuss some convergence properties 

of the new algorithm, and prove the global convergence. 

Lemma 3.1 Suppose that (H1)-(H3) hold and the se-

quence  kx  is generated by Algorithm, 

then
( )lim liml k k

k k
f f

 
 . 

Proof. A proof of this lemma can be observed in [2]. 

Corollary 3.1 Suppose (H1)-(H3) hold and the sequence 

 kx  is generated by Algorithm, then lim limk k
k k

T f
 

 . 

Proof. A proof of this lemma can be observed in [2].  

Lemma 3.2 Suppose that the sequence  kx  is generated 

by Algorithm 2.1. Then, Step 4 of the algorithm is well-

defined. 

Proof. We consider two cases: 

Case 1. k I . 

First we prove that when p  is sufficiently large, (9) 

holds. Let i

kd  be the solution of sub-problem (2) corres-
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ponding to p i  at 
kx , and  0 ( )i

k k km m d  be the 

predicted reduction corresponding to 
ip 

 at kx
. It 

follows from Lemma 2.1 that 

   
1

0 ( ) 0 ( )
2

T

k k k k k k k k km m d m m q g q      . 

Using this inequality and Lemma 2.2, we have 

 
 

   

 
2

2

( )

( ) ( )

( )

( 0 ( ))
1

0 ( ) 0 ( )

( ) ( )

1 1
/

2 2

( )
,

1
/

2

i i i

k k k k k k k k k

i i

k k k k k k

i

k k i

T T

k i k k k i k k k

k i

T

k k k

f f x d f f x d m m d

m m d m m d

O d O

g q g q q

O

g q q



 



     
 

 

 

 





where the last inequality is obtained using (2) and (8). 

Now, as i  , then ( ) 0i

k i k ks q    and conse-

quently, using (8), the right hand side of the preceding 

inequality tends to zero. Which implies that for p  suffi-

ciently large (9) holds. Now, using (11), we have 

 

 

 

 
ˆ

0 ( ) 0 ( )

k k k k

k

k k k k

T f x d f f x d
r

m m d m m d


   
  

 
. 

Therefore, when p  is sufficiently large, 
k̂r  . 

Case 2. k J . 

We prove that the line search terminates in the finite 

number of steps. For establishing a contradiction, assume 

that there exists k J  such that 

( )i i T

k k k k k k kf x s d T s g d    ,  0i         (12) 

From Lemma 2.3, we have 
k kf T . This fact, along with 

(12), implies that 
( )i

Tk k k k

k ki

k

f x s d f
g d

s






 
 , 

 0i  . 

Since f  is a differentiable function, by taking a limit, as 

i  , we obtain T T

k k k kg d g d . 

Using the fact that (0,1 2)  , this inequality leads us to 

0T

k kg d   which contradicts Remark 2.1. Therefore, 

Step 4 in Algorithm 2.1 is well-defined. 

Lemma 3.3 Suppose that (H3) hold and assume the se-

quence  kx  does not converge to a stationary point, i.e., 

there exists a constant 0 1   such that for all k N , 

we have  kg x  . Then, we 

have lim min , 0k
k

kL






 
 

 
where 

11 maxk i k iL B   . 

Proof. Similar to [5], the proof of this lemma can be ob-

served. 

Theorem 3.1 Suppose that (H1)-(H4) hold and the se-

quence  kx  is generated by Algorithm, 

then liminf 0k
k

g


 .Proof. The proof is similar to the 

proof of theorem 3.5 in [1]. 

4. Conclusion 

In this paper, a variant non-monotone trust region algo-

rithm for solving unconstrained optimization problem is 

proposed. Unlike traditional trust region method, the pro-

posed algorithm does not reject a failed trial step, but 

performs a non-monotone line search in direction of the 

rejected trial step in order to avoid resolving the trust 

region sub-problem instead. We analyzed the properties 

of the algorithm and proved the global convergence 

theory under some mild conditions. 
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