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Abstract: In this paper, we incorporate a nonmonotone technique with the new proposed adaptive trust region 
radius for solving the nonlinear equations. To decrease the computational complexity, a limited memory 
BFGS update is used to generate an approximated matrix rather than a normal Jacobian matrix or quasi-
Newton matrix. Moreover, a line search technique is used to avoid repeatedly computing the trust region algo-
rithm. Theoretical analysis indicates that the new method preserves the global convergence under mild condi-
tions. 
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1. Introduction  
Consider the following nonlinear system of equations: 
                              ( ) 0,F x = ,nx R∈                             (1) 
where : n nF R R→  is a continuously differentiable map-
ping in the form ( ) ( ) ( ) ( )( )1 2, , ,

T
nF x F x F x F x= L . There 

are various methods to solve the above nonlinear systems 
and the trust-region method is a very popular way among 
them (see [1-5] for instance).  
Suppose that ( )F x has a zero, then the nonlinear system 
(1) is equivalent to the following nonlinear unconstrained 
least-squares problem 

( ) ( ) 21min =
2

. . n

f x F x

s t x R∈

：
                         (2) 

where . denotes the Euclidean norm. 
At each iterative point kx , the traditional TR methods 
obtain the trial step kd  using the following subproblem 
model: 

( ) 2

.

1min
2

. .

k k k

n
k

q d F J d

s t d R and d

= +

∈ ≤ ∆
                     (3) 

where ( ) ( ) ( )', ,k k k k k kf f x F F x J F x= = = , and 0k∆ > is 
trust region radius. Because the Jacobian matrix ( )'F x  
must be computed at all iterations, which obviously in-
creases the workload, we can use the update matrix gen-
erated by the quasi-Newton method instead of Jacobian 
matrix. Yuan et al. [3] raised a new TR subproblem de-
fined by 

( ) 2

.

1min
2

. .

n k k k
d R

k

q d F B d

s t d
∈

= +

≤ ∆
                   (4) 

where ( ), 0,1 , 0p
k kc F c p∆ = ∈ >  is an integer and kB  is 

generated by the BFGS formula 

1 ,
T T

k k k k k k
k k T T

k k k k k

B s s B y yB B
s B s y s+ = − +                  (5) 

where 1k k ks x x+= −  and 1k k ky F F+= − . The subproblem (3) 
can be also rewritten as follows 

( ) 2 2

.

1 1 1min
2 2 2

. .

n

T T T
k k k k k k k k

d R

k

q d F J d F F J d d J J d

s t d
∈

= + = + +

≤ ∆
 

because the Jacobian matrix ( )'
kF x  is symmetric. Yuan 

et al. [6] propose the following TR subproblem model: 

( ) 2 2 '

.

1 1 1min
2 2 2

. .

n

T T
k k k k k k k

d R

k

q d F J d F F B d d B d

s t d
∈

= + = + +

≤ ∆
where 

'
kB  is defined by the special BFGS update: 

                
' '

' '
1 ' ,

T T
k k k k k k

k k T T
k k k k k

B s s BB B
s B s s

δ δ
δ+ = − +                   (6) 

where ( )( )k k k kF x y F xδ = + − . These TR methods require 
the matrix information (the Jacobian matrix or the BFGS 
update matrix), which will increase the computational 
complexity, so we will use the limited-memory BFGS 
(L-M-BFGS) method instead of the BFGS update. The 
L-M-BFGS update formula is defined as: 
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1

1 1 1 1 1 1

1 1 1

1 1 2 1 1 2 1

+

.

T T
k k k k k k k

T T T T
k k k k k k k k k k k

T T
k k m k m k m k

T T T
k m k k m k m k m k m k

T
k k k

N V N V s s

V V N V s s V s s

V V N V V

V V s s V V

s s

ρ

ρ ρ

ρ

ρ

+

− − − − − −

− + − + − +

− + − − + − + − + − + −

=

 = + + 
=

   =    
   +    

+

+

% % %

% % % % %

L

L L

L L

L

(7) 

where ( )1 , 1 , 0T
k k k k kT

k k

V y s m
s y

ρ ρ= = − >% is an inter, 0 =N I is 

the unit matrix. The difference between the L-M-BFGS 
method and the BFGS method is that the inverse Hessian 
approximation is not explicitly formed, but defined by a 
small number of BFGS updates. And it provides a fast 
rate of linear convergence and requires minimal memory. 
Therefore, the L-M-BFGS TR subproblem model is de-
signed as follows 

( )
21

.

1min
2

. .

n k k k
d R

k

q d F N d

s t d

−

∈
= +

≤ ∆
                   (8) 

where ( ), 0,1 , 0p
k kc F c p∆ = ∈ >  is an integer. 

As we all know, the nonmonotone technique can improve 
the iterative algorithms in optimization. In this paper, we 
propose a modified trust-region method for solving non-
linear equations. The method is motivated by the new 
nonmonotone technique proposed in [7]. From [7], we 
have 

( ) ( )+ 1-k k k kl kR f fη η=                    (9) 
where 

( ) ( )
{ }

( ) { }
[ ] [ ) [ ]

0

min max min max min

max , 0,1,2, ,

0 0, 0 ( ) min ( 1) 1, , 0

, 0,1 , ,1 .

k jl k j m k

k

f f k

m m k m k N N

forη η η η η η

−≤ ≤
= =

= ≤ ≤ − + ≥

∈ ∈ ∈

K

 

Then, we define the actual reduction as  
( ) ( )+k k k k kared d f x d R= −  

and the predict reduction as 
( ) ( ) ( )0k k k k kpred d q d q= − . 

Then, we define the following ratio  
( )
( )

( )
( ) ( )0

k k k k k
k

k k k k k

ared d f x d R
r

pred d q d q
+ −

= =
−

                       (10) 

   In the traditional TR methods, if 1kr µ≥ , the trial step 

kd  is accepted and it is called as a successful iteration. 
Otherwise, we need to solve the TR subproblem repeat-
edly, which increase the computational cost. Therefore, 
in this paper, similar with [8], we propose an inexact 
nonmonotone line search technique 

       ( ) ( )2
k k k k k k kf x d R e f xα γα+ ≤ + −               (11) 

where ( ) 0 00,1 , R fγ ∈ =  , the positive sequence { }ke  satis-

fies 
0 kk
e∞

=
< ∞∑ . 

If 1kr µ< , the next point is defined by 1k k k kx x dα+ = + , 
where ( ), 0,1 ,ki

k kr r iα = ∈  is the smallest non-negative 
integer i  such that (11). 
Furthermore, the adaptive radius which control the size 
of the trust-region radius to prevent increasing and de-
creasing the radius, can also improve the TR methods. If 
the trust-region radius k∆  is very large, then the number 
of subproblems will be increased and the workload may 
be increased. On the other hand, if k∆  is very small, then 
the total number of iterations is increased and efficiency 
of the method will be possibly reduced. Keyvan Amini et 
al. [9] proposed the following adaptive radius: 

1 1

1 ( 1) 1 2

2 ( 1) 2

,
: ,

,

k k k

k l k k

l k k

if r
NF if r

NF if r

η α µ

µ µ

η µ

∗

+ +

+

 ∆ <


∆ = ≤ <
 ≥

              (12) 

in which  
{ } { }( ) 0 ( )

: max , 0 ,l k k jj n k
NF F k N−≤ ≤

= ∈ U            (13) 

and  
( ) ( ) ( ){ }0 : 0 0 min 1 1, 0n and n k n k N with N= ≤ ≤ − + > ,

1 20 1µ µ< < < , 1 20 1η η< < < , { }max ,k k kF∗∆ = ∆ . 
Because the elements of the new sequence generated by 

( ){ }
0l k k

NF
≥

 are always larger than the elements of 

{ } 0k k
F

≥
, the trust-region radius cannot become too small 

as possible whenever iterates are not near the optimum. 
On the other hand, this sequence is decrease and so it 
prevents the radius of trust-region staying too large 
whenever iterates are not far away from the optimum.  
In this paper, we incorporate a nonmonotone technique 
with the new proposed adaptive trust region radius. 
Moreover, we use a limited memory BFGS update to 
generate an approximated matrix. And under mild condi-
tions, the convergence analysis is established. 
The rest of this paper is organized as follows. In Section 
2, the new algorithm will be introduced. The conver-
gence analysis is investigated in Section 3. Finally, some 
conclusions are addressed in Section 4. 

2. Algorithm 
To obtain better convergence, we will define a new trust 
region model in which the trust region radius differs from 
that of the normal method. Motivated by the observations 
in Section 1, we present the following trust region sub-
problem that we use to obtain kd : 

( ) 21

1
.

1min
2

. .

n k k k
d R

k k

q d F N d

s t N d

−

∈

− ∗

= +

≤ ∆
                  (14) 
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where { }max ,k k kF∗∆ = ∆ . 
Now, we outline our algorithm as follows: 
Algorithm 1 
Initial: Choose a starting point 0

nx R∈ , an initial symme-
tric positive definite matrix 0

n nN R ×∈ , positive integer 

1m , and constants 1 2 1 20, 0 1, 0 1 ,ε µ µ η η> < < < < < <  
( ) ( ) ( ) ( )2

0 0 0 0 0 0 0 0 0 00,1 , : , : , : , 1 / 2 , : , 0 : 0, : 0.J J x NF NF F f F F F x n kγ ∈ = ∆ = = = = = =

 Step1: If kF ε<  holds, stop; otherwise, let 

{ }max ,k k kF∗∆ = ∆ , and go to step 2. 
Step2: Solve trust region subproblem (14) and obtain kd . 
Step3: Compute ( ) ( ), , kl km k f R  by (9) and kr  by (10). If 

1kr µ≥ , let 1k k kx x d+ = + ; 
Otherwise, let 1k k k kx x dα+ = + , where ki

k rα =  and ki  is 
the smallest non-negative integer i  such that (11) holds 
for irα = . 
Step4:Let 

{ }1 1 1min 1, , , .k k k k k k km k m s x x d y F F+ += + = − = = −%  We 
update 0N m%  times to obtain 1kN +  by (7). 
Step5: ( ) ( ) ( )1 1 1 1 +1 1: ; : ; : ;k k k k k kF F x f f x J J x+ + + + += = = com-
pute ( )1n k +  and ( )1l kNF +  according with (13); determine 

1k +∆  using (12). 
Step 6: Set : 1k k= +  and go to step 1. 
Algorithm 2 
Initial: An initial symmetric positive definite matrix 

0
n nB R ×∈ . 

Step4:Let 
{ }1 1 1min 1, , , .k k k k k k km k m s x x d y F F+ += + = − = = −%  We 

update 0B m%  times, i.e., for 1, ,l k m k= − +% L  compute 

1 ,
l T l T

l l k l l k l l
k k T l T

l k l l l

B s s B y yB B
s B s y s

+ = − +                     (15) 

where 1 1,l l l l l ls x x y J J+ += − = −  and 1
0

k m
kB B− + =%  for all k. 

Note Algorithm 1 and 2 are mathematically equivalent. 
Throughout this paper, we only discuss the global con-
vergence of Algorithm 2. 

3. Convergence Analysis 
This section gives some convergence results under the 
following assumptions. 
(H1) Let the level set ( ) ( ){ }0x f x f xΩ = ≤ be bounded. 

(H2) ( )F x  is continuously differentiable, { }kF  is 
bounded, and kJ  is uniformly nonsingular. 
(H3) { }kB  generated by Algorithm 2 is positive definite 
and bounded, i.e., there exist positive constants 

0M m≥ >  such that 
2, ,T n

k kB d M d m d d B d d R≤ ≤ ∈ .            (16) 

If { }kB  generated by Algorithm 2 is not positive definite, 
we can utilize various 
methods [10,11] to ensure this property. 
Lemma 3.1 If kd  is the solution of (14), then  

   ( ) 1 min ,
2

k k
k k k k k T

k k

B F
pred d B F

B B
∗

  − ≥ ∆ 
  

            (17) 

holds. 
Proof. The proof is similar to Lemma 3.1 in [12]. 
Considering Algorithm 2, by (17) and (10), for a success-
ful iteration, we obtain 

( ) 1
1 .
2k k k k k kf x d R B Fµ ∗+ ≤ − ∆                (18) 

Lemma 3.2 Suppose that the sequence { }kx  is generated 
by Algorithm 2. Then, we have  

 { }1 1 0k kf R k N+ +≤ ∀ ∈ U .               (19) 
Proof. The proof is similar to Lemma 3.2 in [7]. 
REMARK 3.1 Since 0ke > , after a finite number of re-
ductions of kα , the condition 

( ) ( )2
k k k k k k kf x d f e f xα γα+ ≤ + −  necessarily holds. From 

Lemma 3.2 we know that { }1 1 0k kf R k N+ +≤ ∀ ∈ U . So 
the line search process, i.e. Step 3 of Algorithm 1, is well 
defined. Thus, we have the following reasonable assump-
tion. 
(H4) There exists a constant α∗  that satisfies 

  , .k kα α∗≥ ∀                               (20) 
Lemma 3.3 Let (H1)-(H3) hold and { }kx  be generated by 

Algorithm 2. Then { }kx ⊂ Ω . Moreover, ( ){ }kf x  con-
verges. 
Proof. The proof is similar to Lemma 3.3 in [3]. 
Lemma 3.4 Let (H1)-(H3) hold, then we have kx ∈ Ω  

and the sequence ( ){ }l kf  is not monotonically increasing. 

Therefore the sequence ( ){ }l kf  is convergent. 

Proof. Using the definition of kR  and ( )l kf , we get 

( ) ( ) ( ) ( ) ( ) ( )+ 1- + 1-k k k k k kl k l k l k l kR f f f f fη η η η= ≤ =       (21) 
From (19) and (21), we have 

 ( )k k l kf R f≤ ≤ .                          (22) 
It is clear that 0 0R f= . By induction, we show that 

kx ∈ Ω . We assume that ,ix ∈Ω  for 1,2, ,i k= K . We then 
prove that 1kx + ∈ Ω . To do this, we consider two cases: 
For 1kr µ≥ , we get 

( ) ( ) ( )( )1 0 0.k k k k k kR f x d q q dµ− + ≥ − ≥  
For 1kr µ< , using (18), we get 

( ) 1
1 .
2k k k k k k kf x d R B F Rµ+ ≤ − ∆ ≤  

These two inequalities along with (22) show that 
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( ) { }1 0 0k k l kf R f f k N+ ≤ ≤ ≤ ∀ ∈ U .              (23) 
Thus, we have kx ∈ Ω . 

Now, we prove that the sequence ( ){ }l kf  is not monotoni-

cally increasing. To do so, we consider the following two 
cases: 
For k N≥ , we have ( ) ( )1 1m k m k+ ≤ + . Thus, from the 
definition of ( )1l kf +  and (22), we can write 

( ) ( )
{ }

( )
{ } ( ){ } ( )1 1 11 0 1 0 1

max max max ,k j k j kl k l k l kj m k j m k
f f f f f f− + − + ++ ≤ ≤ + ≤ ≤ +

= ≤ = ≤ .   

(24) 
For k N< , it is obvious that ( )m k k= . Since any 

0, kk f f≤ , then we have ( ) 0l kf f= . 

Both cases show that the sequence ( ){ }l kf  is not mono-

tonically increasing. 
Moreover, the conclusions above imply that ( )l kf  is 
bounded. So ( )l kf  is convergent. 
Lemma 3.5 Let (H2) and (H3) hold. Then, there exist 
positive constants 1 1 2 2 3 3, ,m M m M and m M≤ ≤ ≤  that 
satisfy the following inequalities: 

           2 2
1 1 ,T

k k k km d d F M d≤ − ≤                 (25) 

 2 2
2 2 ,T

k k k k km d d B F M d≤ − ≤                (26) 
And 

     3 3 .k k km F d M F≤ ≤                     (27) 
Proof. The proof is similar to the proof of Lemma 3.2 in 
[12]. 
Lemma 3.6 Let the sequence { }, ,k k kx F d  be generated by 
Algorithm2, and let (H1)-(H4) hold. Then, we obtain 

( )
0

T
k k

k
F d

∞

=

− < ∞∑ .                          (28) 

In particular, we obtain 
( )lim 0T

k kk
F d

→∞
− = .                         (29) 

Proof. Considering Algorithm 2.2, for a successful itera-
tion, using (18), (25), (27) and the definition of k

∗∆ , we 
get 

( ) ( ) ( )
2

2 1
1 1 1 1

3 1 3

1 1
2 2 2

k T
k k k k k kl k

d mf x f f x R m F m d F
M M M

µ
µ µ+ +

−
− ≤ − ≤ − ≤ ≤ .  

(30) 
On the other hand, using the line search (11), we have 

( ) ( )2
k k k k k k kf x d R e f xα γα+ − − ≤ − By (H4), we get 

( ) ( ) ( )

( )

1 1

22 2

2
2 2

2 2
3 1 3

1
2

1 1 .
2 2

k k k k kl k

k k k

T
k k k

f x f e f x R e

f x F

d d F
M m M

γα γα

γα γα

+ +

∗

∗ ∗

− − ≤ − −

≤ − ≤ −

−
≤ ≤

         (31) 

By lemma 3.3, lemma 3.4 and 
0 kk
e∞

=
< ∞∑ , combining 

(30) and (31), it implies that (28) holds. According to 
(28), it is easy to deduce (29). The proof is complete. 
Theorem 3.1 Let { }kx  be generated by Algorithm 2.2, let 
(H1)-(H4) hold. Then, we have 

lim 0.kk
F

→∞
=                              (32) 

Proof. By Lemma 3.6, we get ( )lim 0T
k kk

F d
→∞

− =  

Combining the above equation and (25), we have 
lim 0.kk

d
→∞

=                              (33) 

This together with (27) gives (32). The proof is complete. 

4. Conclusion 
In this work, we introduce a new trust-region algorithm 
for solving the nonlinear equations by combining a non-
monotone technique and a limited memory BFGS update. 
To decrease the computational complexity, we use a line 
search technique and the new proposed adaptive trust 
region radius. Under mild conditions, we obtain the glob-
al convergence. There are at least three issues that need 
further improvement: (i) The first issue which should be 
considered is the numerical experiments, the numerical 
results can demonstrate the efficiency of the new method. 
(ii) The second issue is the choice of the parameters in 
the proposed algorithms, the values used here are not the 
only choices. Different options can bring different re-
sults . (iii) The last important issue is that the proofs of 
convergence rate need to be completed. All these topics 
will be the focus of future work. 
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