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Abstract: In this paper, we incorporate a nonmonotone technique with the new proposed adaptive trust region
radius for solving the nonlinear equations. To decrease the computational complexity, a limited memory
BFGS update is used to generate an approximated matrix rather than a normal Jacobian matrix or quasi-
Newton matrix. Moreover, aline search technique is used to avoid repeatedly computing the trust region algo-
rithm. Theoretical analysis indicates that the new method preserves the global convergence under mild condi-

tions.
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1. Introduction

Consider the following nonlinear system of equations:
F(x) =0, xI R", 1)
whereF:R'"® R" is a continuously differentiable map-
ping in the form F(x)=(F,(x),F,(x),L,F,(x))" . There
are various methods to solve the above nonlinear systems
and the trust-region method is a very popular way among
them (see[1-5] for instance).
Suppose that F(x) has a zero, then the nonlinear system
(1) isequivaent to the following nonlinear unconstrained
|east-sguares problem

min f (x)=ZF (x)f @

st. xI R
where || denotes the Euclidean norm.
At each iterative point x, , the traditional TR methods
obtain the trial step d, using the following subproblem
model:
minqk(d)=%||Fk +3,d[f

(©)
st. dT R"and ||d| £ D,

where f, =f(x).F =F(x),J,=F(x), and D >0 is
trust region radius. Because the Jacobian matrix F'(x)
must be computed at all iterations, which obviously in-
creases the workload, we can use the update matrix gen-
erated by the quasi-Newton method instead of Jacobian

matrix. Yuan et a. [3] raised a new TR subproblem de-
fined by

. 1
min g, (d) = 2[F + B[’

(4)
st. |d|£D,
where D, =cP||F|,cl (0,1), p>0 is an integer and B, is
generated by the BFGS formula
T T
By = B~ Sty Mk ©®)

SBS. ¥is
where s =x,,- x. and y, =F,,, - F.. The subproblem (3)
can be also rewritten as follows

. 1 1 1

min g, (d) = Z|F + Jd* :E||Fk||2 +F3d+2d903d

st. |d]£D,

because the Jacobian matrix F'(x,) is symmetric. Yuan

et a. [6] propose the following TR subproblem model:

i 1 1 1 0
min q, (d) :E"Fk +3,d|* :E||Fk||2 +F/Bd +EdTBkd where
st. |d| £ D,

B, isdefined by the specia BFGS update:
. _ . BssB  ddf 5

Bk+1 Bk S‘KerSK +dl;|-SK‘ ( )

where d, = F(x, +V,)- F(%) . These TR methods require
the matrix information (the Jacobian matrix or the BFGS
update matrix), which will increase the computationa
complexity, so we will use the limited-memory BFGS

(L-M-BFGS) method instead of the BFGS update. The
L-M-BFGS update formulais defined as:
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Nk+1 :VkT Nka +r kSKS:
:VkT g/k‘lilNkerkrl +r k—1sk—1str—1E|Vk +r kS«SI
=L
= g/kT ka r§h+1HNk— m+l g/k— M+l LVkT H
T éVkT Vi ia H% m+131 i+l éVk, 2 I—VkT— 18
+L
1SS

()

where r, =Sziy,vk =1- r,y,s.M(>0)is an inter, Ny=I is
k
the unit matrix. The difference between the L-M-BFGS
method and the BFGS method is that the inverse Hessian
approximation is not explicitly formed, but defined by a
small number of BFGS updates. And it provides a fast
rate of linear convergence and requires minimal memory.
Therefore, the L-M-BFGS TR subproblem model is de-
signed as follows
. 21 T
IL;TT“RI:'] G (d) - E"Fk * Nkld" (8)
st. ||d|£D,
where D, =c?||F |, cl (0,1), p>0 isaninteger.
Aswe all know, the nonmonotone technique can improve
the iterative algorithms in optimization. In this paper, we
propose a modified trust-region method for solving non-
linear equations. The method is motivated by the new
nonmonotone technique proposed in [7]. From [7], we
have
R =h, fiy+(Th) i 9
where

fig = Omgamfk

m(0) =0, 0£ m(k) £ min{m(k- 1) +1,N} ,N 2 0
Nl [Nin o] for h T [02), h T [0
Then, we define the actual reduction as
aredk(dk)= f(xk+dk)- R,
and the predict reduction as
pred, (d,) =q,(d.)- & (0) -
Then, we define the following ratio
_ ared, (d,) _ f(x +d)- R
“ predk(dk) qk(dk)' qk(o)

In the traditional TR methods, if r, 3 m, the trial step

d, is accepted and it is called as a successful iteration.

Otherwise, we need to solve the TR subproblem repeat-
edly, which increase the computational cost. Therefore,
in this paper, similar with [8], we propose an inexact
nonmonotone line search technique

f(x +a,d)ER +e -, f(x)

){ f.} k=012K,

min? min?

(10)

(11)

where g1 (0,1), R, = f, , the positive sequence {¢} satis-

fies § :;Oek <¥.

If r, <m, the next point is defined by x,,, =x, +a,d, ,
where a, =r*,r1 (0,1),i, is the smallest non-negative
integer i such that (11).

Furthermore, the adaptive radius which control the size
of the trust-region radius to prevent increasing and de-
creasing the radius, can aso improve the TR methods. If
the trust-region radius D, is very large, then the number
of subproblems will be increased and the workload may
be increased. On the other hand, if D, isvery smal, then
the total number of iterations is increased and efficiency

of the method will be possibly reduced. Keyvan Amini et
a. [9] proposed the following adaptive radius:

Iha,D, if r,<m,
D,., = : NF, .1y if mer, <m, (12)
ThoNF i 13 m,
inwhich
NF, = max {[F [} kT NU{d, (13)
and

n(0)=0and 0£ n(k) £min{n(k- 1) +LN} withN >0
0<m<m<1, 0<h,<1<h,, D, =max{|F].D} -

Because the elements of the new segquence generated by
{NFI(k)}kaO are adways larger than the elements of

{IR}.., the trust-region radius cannot become too small

as possible whenever iterates are not near the optimum.
On the other hand, this sequence is decrease and so it
prevents the radius of trust-region staying too large
whenever iterates are not far away from the optimum.

In this paper, we incorporate a nonmonotone technique
with the new proposed adaptive trust region radius.
Moreover, we use a limited memory BFGS update to
generate an approximated matrix. And under mild condi-
tions, the convergence analysis is established.

The rest of this paper is organized as follows. In Section
2, the new algorithm will be introduced. The conver-
gence analysisisinvestigated in Section 3. Finally, some
conclusions are addressed in Section 4.

2. Algorithm

To obtain better convergence, we will define a new trust

region model in which the trust region radius differs from

that of the normal method. Motivated by the observations

in Section 1, we present the following trust region sub-
problem that we use to obtain d, :

. 1 2

min g, (d) = 2[R+ Nd]

st. |N;d|[£D,

(14)
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where D, =max{|[F,|.D,} -

Now, we outline our algorithm as follows:

Algorithm 1

Initial: Choose a starting point x,T R, an initia symme-
tric postive definite matrix N,T R™", postive integer
m , and constants e>0,0<m<m <10<h, <1<h,,
gl (02),3,:=3(%), Dy := Ny, NF, =|Ry|, f, =1/2|F,|*, Fy = F (%), n(0):=
Stepl: If |FR|<e holds, stop; otherwise,
D, = max{||F.D} , and go to step 2.

Step2: Solve trust region subproblem (14) and obtain d, .
Step3: Compute m(k), f, g-Re by (9) andr, by (10). If

rk3 n]’ Iet Xk+1:Xk+dk’
Otherwise, let x.,, =x +a,d, , where a, =r" and i, is
the smallest non-negative integer i such that (11) holds
fora=r'".

Step4:Let

r%1=min{k+],ml},sK =X ™ X% =0 Y =Fea - R
update N, fh timesto obtain N,,, by (7).
Step5: Fy = F (%en)i T = T (%en)s Jn = I (X)) COM-
pute n(k +1) and NF,,, according with (13); determine
D,., using (12).

Step 6: Set k:=k+1 and go to step 1.

Algorithm 2

Initial: An initid symmetric positive definite matrix
B,1 R"".

Step4:Let

m:min{k+lml},SK =X~ % =d, ¥ =F

let

We

(k+1)

We

k+1 ” Fk'
update B, rh times, i.e., for | =k - th+1L ,k compute

. W
BL 1 — B:( Bkﬁﬁ Bk RARA

SBs Vs’
where s =x,,- X,y =J,,- J, and BS™* =B, foral k.
Note Algorithm 1 and 2 are mathematically equivalent.

Throughout this paper, we only discuss the globa con-
vergence of Algorithm 2.

(15

3. Convergence Analysis

This section gives some convergence results under the
following assumptions.

(H1) Let thelevel set W={x|f (x) £ f (x,)} be bounded.

(H2) F(x) is continuously differentiable, {|F,[}
bounded, and J, isuniformly nonsingular.
(H3) {B} generated by Algorithm 2 is positive definite

and bounded, i.e, there exist positive constants
M 3 m>0 such that

Bl mld], midf ea'Bd, T R (19)

0,k:=0.

If {B} generated by Algorithm 2 is not positive definite,

we can utilize various
methods [10,11] to ensure this property.
Lemma3.11f d, isthe solution of (14), then

B.F IIP
- pred, (d, )3 —||BkF ||m|n D, |
i BB

(17)

holds.

Proof. The proof issimilar to Lemma3.1in[12].
Considering Algorithm 2, by (17) and (10), for a success-
ful iteration, we obtain

1 .

(% +d)ER - SmlBF|D.

Lemma 3.2 Suppose that the sequence {x} is generated
by Algorithm 2. Then, we have

fin £R. " kT NU{O} .

Proof. The proof issimilar to Lemma3.2in[7].
REMARK 3.1 Since e >0, after a finite number of re-

ductions of a, , the condition
f(x +a,d)£ f, +e - ga’f(x) necessarily holds. From
Lemma 3.2 we know that f, £R, "ki NU{0}. So

the line search process, i.e. Step 3 of Algorithm 1, iswell
defined. Thus, we have the following reasonable assump-
tion.

(H4) There existsaconstant a. that satisfies

a a., "k (20)
Lemma 3.3 Let (H1)-(H3) hold and {x} be generated by
Algorithm 2. Then {x}1 W. Moreover, {f(x)} con-

verges.
Proof. The proof issimilar to Lemma3.3in[3].
Lemma 3.4 Let (H1)-(H3) hold, then we have x I W

and the sequence { f (k)} is not monotonically increasing.

(18)

(19)

Therefore the sequence { f, (k)} is convergent.

Proof. Using the definition of R and f,,,, we get

R =h, fl(k)+(1_hk) f £h, fl(k)+(1'hk) fiog = fig (21)
From (19) and (21), we have
f ERCE fy (22)

It is clear that R =f,. By induction, we show that
x 1 W.Weassumethat x T W, for i =1,2,K,k. We then
provethat x,T W. Todo this, we consider two cases:
For r. 2 m, weget

R - f(xk +dk)3 nl(Qk(O)' qk(dk))3 0.

For r, <m, using (18), we get

1
f (Xk +dk)£ R< - En]"Bka"Dk £ R<
These two inequalities along with (22) show that
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fEREfHET
Thus, we have x, T W.

"kT NU{0}. (23)

Now, we prove that the sequence { fl(k)} is not monotoni-

cally increasing. To do so, we consider the following two
cases.

For k3 N, we have m(k+1) £m(k)+1. Thus, from the

definitionof f,,.,, and(22), we can write

f = max{ ), foa) £ 1,
(24)
Since any

(1) = Usfpr?(>15+1){ fi. j+1} £ ing;;i(f)ﬂ{ fi. i+1}

For k<N, it is obvious that m(k)=k .
k f £ f,, thenwe have f,, = f,.
Both cases show that the sequence { fl(k)} is not mono-

tonically increasing.
Moreover, the conclusions above imply that f, is

bounded. So f,,, is convergent.
Lemma 3.5 Let (H2) and (H3) hold. Then, there exist

postive constants m£M;, m £M,,and m,£M, that
satisfy the following inequalities:
m|d " £ - di F £M,|d|", (25)
m,|d, | £ - d B.F £ M, d |’ (26)
And
my R £ [d £ Ms[[ R (27)

Proof. The proof is similar to the proof of Lemma 3.2 in
[12].

Lemma 3.6 Let the sequence {x,F.d,} be generated by
Algorithm2, and let (H1)-(H4) hold. Then, we obtain

S (et
a(-Fd)<¥. (28)
k=0
In particular, we obtain
Li@m(- F/d)=0. (29)

Proof. Considering Algorithm 2.2, for a successful itera-
tion, using (18), (25), (27) and the definition of D, , we
get

o ”
M3

g_mm
2MM,

(30)
On the other hand, using the line search (11), we have
f (Xk +akdk) - R< - & £- gasz (Xk) By (H4), we get

(%)~ fipg ™ & E T (%) - Re- &

1 1
f (%)~ figg £ F (%) R E- ErquFkH2 £§n1m

1
e-@lf(x)E- @Rl @Y
1 -l .1, dlF
£l g ogp kK
PR VERL S el VY

()

AR

By lemma 3.3, lemma 34 and § |_e <¥ , combining

(30) and (31), it implies that (28) holds. According to
(28), it iseasy to deduce (29). The proof is complete.
Theorem 3.1 Let {x} be generated by Algorithm 2.2, let

(H1)-(H4) hold. Then, we have

|ki®n;1|| FJ=0. (32
Proof. By Lemma 3.6, we get lim (- Fd, ) =0
Combining the above equation and (25), we have

lim||d, [ = 0. (33)

k® ¥

This together with (27) gives (32). The proof is complete.
4. Conclusion

In this work, we introduce a new trust-region agorithm
for solving the nonlinear equations by combining a non-
monotone technique and a limited memory BFGS update.
To decrease the computational complexity, we use aline
search technique and the new proposed adaptive trust
region radius. Under mild conditions, we obtain the glob-
a convergence. There are at least three issues that need
further improvement: (i) The first issue which should be
considered is the numerical experiments, the numerical
results can demonstrate the efficiency of the new method.
(if) The second issue is the choice of the parameters in
the proposed algorithms, the values used here are not the
only choices. Different options can bring different re-
sults . (iii) The last important issue is that the proofs of
convergence rate need to be completed. All these topics
will be the focus of future work.
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