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Abstract: Wireless sensor networks localization is an important area that attracted significant research inter-
est. The gathered information needs to be associated with the location of the sensor nodes to provide an accu-
rate view of the observed sensor field. Generally, the position estimation has some errors due to the measure-
ments of distance. Erroneous positions are propagated from a node to other nodes exacerbating the degree of 
errors in the estimation of the positions of these nodes. In this paper, we evaluated the performance of 
NMDS-RSSI localization algorithm. We concluded that the average value of the localization error deceased 
with signal propagation coefficient-µ increasing. Then, we proved that the robust of NMDS algorithm for bad 
environment is good. Moreover, the relationship between the localization error and connectivity is obtained. 
The simulations show that the NMDS-RSSI localization algorithms have better performance than the MDS-
MAP in the same simulation conditions. 
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1. Introduction 
Wireless sensor networks (WSN) are closely associated 
with the physical phenomena in their surroundings. The 
gathered information needs to be associated with the lo-
cation of the sensor nodes to provide an accurate view of 
the observed sensor field. Wang et al [1] present an over-
view of recent developments in wireless sensor technolo-
gies in the food industry. Werner-Allen advocates the 
deployment of a WSN in precision agriculture because of 
its small size, low fixed cost and simplicity of wiring [2]. 
In Europe, the Lofar Agro project is a study of precision 
agriculture that focuses on tailored management of a crop. 
This involves monitoring soil, crop and climate condi-
tions in a field, generalizing the result and providing a 
decision support system for treatments or taking differen-
tial action such as real time variation of fertilizer or pesti-
cide application. The DSS gathers information from a 
weather station by the wireless network. This is em-
ployed to map out a temperature and soil humidity distri-
bution which is used to develop an effective strategy for 
controlling diseases such as Phytophthora [3, 4]. 
To accomplish the mentioned applications, the positions 
of the sensor nodes must be estimated. As a result, the 
sensor localization is one of the important signal 
processing tasks in WSN. Sensor network localization 
algorithms estimate the locations of sensors with initially 
unknown location information by using knowledge of the 
absolute positions of a few sensors and inter-sensor mea-

surements such as distance and bearing measurements. 
Sensors with known location information are called bea-
cons and their locations can be obtained by using a global 
positioning system, or by installing anchors at points with 
known coordinates. In applications requiring a global 
coordinate system, these anchors will determine the loca-
tion of the sensor network in the global coordinate sys-
tem. Because of constraints on the cost and size of sen-
sors, energy consumption, implementation environment 
and the deployment of sensors, most sensors do not know 
their locations. These sensors with unknown location 
information are called non-anchor nodes and their coor-
dinates will be estimated by the sensor network localiza-
tion algorithm [5, 8].  
Positioning algorithms in WSN can be categorized as 
centralized and distributed approaches. In centralized 
localization, all distance measurements are sent to a cen-
tral unit for calculating the sensor positions. Centralized 
processing is advantageous in the sense that the solution 
obtained is generally more accurate and a global map is 
available. The measurement data of all the nodes in the 
network are collected in a central processor unit. In such 
a network, it is convenient to use a centralized localiza-
tion scheme. A localization algorithm is less complex in 
terms of computations, communication overhead and 
increasing the overall lifetime of the network with low 
life-cycle costs [6]. 
In this paper, we give details of a simple mathematical 
technique, Nonmetric Multidimensional scaling and how 
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it solves the localization problem. This so called NMDS 
algorithm is able to find the relative positions of nodes 
and with few anchor nodes available derives or maps the 
relative coordinates to absolute coordinates. When using 
a complex localization algorithm highly sophisticated 
nodes must be deployed and this increases the overall 
cost of deployment of the network. With a tradeoff be-
tween complexity and accuracy this less complex NMDS 
algorithm derives absolute positions of nodes with accu-
racy sufficient enough for most of the applications in 
farm. At last, we present simulation results of the 
NMDS-RSSI algorithm by Matlab. This paper is pre-
sented at conference of  ICCAE 2010. 

2. NMDS-RSSI 
2.1. Multi-Dimensional Scaling 

Multidimensional scaling (MDS) is a set of related statis-
tical techniques often used in information visualization 
for exploring similarities or dissimilarities in data. MDS 
is a special case of ordination. An MDS algorithm starts 
with a matrix of item–item similarities, and then assigns 
a location to each item in N-dimensional space, where N 
is specified a priori. For sufficiently small N, the result-
ing locations may be displayed in a graph [6]. 
MDS algorithms fall into two broad classes: metric algo-
rithms, which seek an embedding with inter-point dis-
tances closely matching the input dissimilarities; and 
non-metric algorithms, which find an embedding respect-
ing only the relative ordering of the input dissimilarities. 
Metric MDS is not appropriate in many of these applica-
tions since the magnitude of the input dissimilarities is 
unreliable, too difficult to measure, or simply unavailable. 
Therefore, we focus on the NMDS localization algo-
rithms in this paper. The MDS is the course of repeated 
iteration [7]. The algorithm is following: the input is the 
initializing coordinate (xi0, yi0)of the nodes. The thre-
shold ε and iteration number k is 0. Firstly, the initializ-
ing coordinate ((xi0, yi0)) is given and the Euclidean 
distance of each pair of nodes is derived by: 
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Then, k increase 1, the new coordinate (xik,yik) is ob-
tained by following formula. 
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Then, the Euclidean distance of each pair of nodes is 
obtained by formula 1 and the STRESS1 is obtained by 
formula 3. 
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If STRESS1<10-3, repeated iteration is over. Otherwise, 
the PAV is going on. 

2.2. RSSI  

General, some of the range-based localization algo-
rithms include: received signal strength indicator (RSSI), 
angle of arrival (AOA), time of arrival (TOA), time dif-
ference of arrival (TDOA). The most common range-
based technique is based on RSSI measurements. Since 
each sensor node is equipped with a radio and in most 
cases is able to send the received signal strength of an 
incoming packet. The main idea is to estimate the dis-
tance of a transmitter to a receiver using the power of 
the received signal, knowledge of the transmitted power 
and the path-loss model. 
In this paper, the beacon node broadcasts periodically 
the messages including their own position, which are 
used to estimate the distance from the beacon node to 
unknown node. The power of the received signal is 
communicated by the transceiver circuitry through the 
RSSI. The received signal strength from sensor node i at 
node j at time t is represented by ( )rP d  , which is formu-
lated as 

0 10 0( ) ( ) 10 log ( / ) ,r TP d P PL d d d Xδη= − − +    (4) 
where ( )rP d is the received signal power,  TP is the 
transmit power, and 0( )PL d is the path loss for refer-
ence distance of 0d  , η  is the attenuation constant and 

2(0, )X Nδ δ=   is the uncertainty factor due to multi-path 
and shadowing.  
The accuracy of the RSSI-based ranging technique is 
limited. Firstly, the effects of shadowing and multi-path 
as modeled by the term in X δ  (4) may be severe and 
require multiple ranging measurements. Generally, the 
estimated distance based on RSSI has the features which 
the localization accuracy is high for the relatively near 
distance of nodes, while the localization error is large for 
the relatively far distance of nodes. 

2.3. NMDS-RSSI 



HK.NCCP                                         International Journal of Intelligent Information and Management Science 
                                                                  ISSN: 2307-0692                                           Volume 3, Issue 2, April 2014 

17 
 

This subsection is description of NMDS-RSSI Localiza-
tion algorithm [7]. In contrast to metric MDS, NMDS both 
finds a non-parametric monotonic relationship between 
the dissimilarities in the item-item matrix and the Eucli-
dean distance between items, and the location of each 
item in the low-dimensional space. The relationship is 
typically found using isotonic regression. Here, The 
RSSI values of measure a pair of nodes is as input. The 
absolute coordinate of network nodes is as output.  

The step of NMDS algorithm: 
    1. RSSI values are collected from network nodes, 
which structure dense matrix [rij]. RSSI value is zero 
when the distance between node i and node j is bigger 
than wireless communication radius. 
    2. Matrix [sij] is derived by that the constant which is 
bigger than rij subtract rij, which is due to that relation-
ship between the RSSI value of node and their distance 
is inverse ratio approximate. 
    3. RSSI value is derived by shortest path algorithm 
dijstra according to the connectivity between [sij] and 
network nodes. Because a pair of nodes with belong not 
to wireless communication radius is not connected, the 
RSSI values of two nodes is zero. To meeting the de-
manding of similarity matrix, the RSSI value of two 
nodes is derived by shortest path algorithm dijstra. 
    4. The dissimilarity matrix [pij] in nodes is formed by 
the RSSI values of two nodes. 
    5. The relative coordinate is derived to the dissimilari-
ty matrix [pij] by NMDS algorithm. 
    6. The relative coordinate of node is converted to ab-
solute coordinate using the known beacon node. 

3. Experiment 
We conducted an experiment to investigate proposed the 
NMDS algorithm. All of these measurements were per-
formed in the Matlab7.0. We performed algorithm per-
formance measurements in the case of grid uniform dis-
tribution. The experimental parameters is following: the 
path loss factor - µ, the mean square deviation of Gaus-
sian noise, wireless communication radius-R, the node’s 
average connectivity – β, the number of beacon node – 
m. In the simulation, the RSSI value can be determined 
according to the formula 4. In farm environment, the 
wireless channel has the disadvantage of reflection、
multipath propagation and the background interference, 
which result to the different propagation loss in the same 
distance. Therefore, in order to simulate the reality situa-
tion, we introduce Gaussian noise ζ σ. In the experimen-
tal, PT =5 dBm, PL (d0)=50 dBm, d0=1m. 

In the case of grid uniform distribution, the nodes 
distribute uniform in the certain size grid with some dis-
tance. In order to simulate the reality situation, we intro-
duce some placing error, which results to the deviation 
node to grid. The number of sensor nodes、the node 

distance、 the wireless communication radius and the 
placing error can be set. 

4. Results and Discussions 

In this section, simulation experiments are conducted to 
study the accuracy of algorithm The experiments were 
carried repeat in situation to changing denotes the signal 
propagation coefficient-µ and the Gaussian noise. The 
100 nodes with placing error were generated in 
60m×60m grid with uniform distribution. The nodes 
distance is 4m. The wireless communication radius is 
8m. The average connectivity is 10. The 4 nodes with 
random selecting is beacon node. 
Fig. 1 plots the average value of the localization error of 
NMDS-RSSI and MDS-MAP as a function of the signal 
propagation coefficient-µ with mean variance (σ=8). Ob-
serving the results reported in the figure, we conclude 
that the average value of the localization error decease 
with signal propagation coefficient-µ increasing. 

Fig. 2 shows that the average value of the localization 
error of NMDS algorithm increase with the mean va-
riance σ. At the same time, the value of the localization 
error is small even if Gaussian noise is the bigger, which 
proves the robust of NMDS algorithm for bad environ-
ment, for example, fields. In Fig. 1 and Fig. 2, the aver-
age localization error of NMDS algorithm is smaller than 
MDS-MAP is concluded. 

Fig. 3 plots the relationship between the localization error 
and the node connectivity. When the node connectivity is 
relatively small, the localization error of NMDS-RSSI 
and MDS-MAP algorithm is bigger. With the increase of 
the node connectivity, the localization error of NMDS-
RSSI will decrease. The localization error of NMDS-
RSSI algorithm decreases much faster than the MDS-
MAP algorithm. As the node connectivity continues to 
increase beyond 10, the both algorithm localization error 
will decrease slowly. This can be explained as follows. 
When the node connectivity reaches a certain point, most 
sensor nodes can localize themselves. If we continue to 
increase the node connectivity, nodes will get to know 
more anchor nodes and have more choices to calculate 
their locations. Thus, the localization error will decrease. 
But, as shown in Fig. 3, this decrease is very limited. 
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Figure 1.  Localization error under different signal propagation 

coefficient-µ 

 
Figure 2.  Localization error under different mean variance σ 

 
Figure 3.  Localization error under different node connectivity 

5.Conclusions 

In this paper, we analyzed the performance of NMDS-
RSSI localization algorithms, using data from scenarios 
in farm. It concluded that the average value of the locali-
zation error decease with signal propagation coefficient-µ 
increasing. And we prove the robust of nonmetric Multi-
dimensional scaling algorithm for bad environment. 
Moreover, we concluded relationship between the locali-
zation error and the node connectivity. The simulations 
show that the NMDS-RSSI localization algorithms yields 
better performance than the MDS-MAP in the same si-
mulation conditions. 
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