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Abstract: This paper combines geometric flow method with tessellation and make full use of their respective 
strengths to complete some surface design problems, such as surface blending, N sides fill holes and others 
which satisfy G1 boundary conditions. Based on full analysis of subdivision, the technology utilizes the dis-
crete of four-order geometric flows to successfully construct four-order geometric partial differential equa-
tions’ finite element method based on quadrilateral surface subdivision. Experimental results show that: sur-
face design which based on geometric flow method and surface subdivision is effective and correct. 
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1. Introduction 
Surface design has been formed a theoretical system 
which takes NURBS parametric feature technology and 
implicit algebraic surfaces as the main body, takes inter-
polations, fitting, approaching as the skeleton. As com-
puter graphics requirements for the authenticity of ob-
jects increase, the object's geometric design complexity 
increases and research areas the expands, using only pa-
rametric polynomial has been far from able to satisfy 
demand, it is urgent to call for new ways to solve new 
problems that appear in various research areas. So seg-
mentation techniques, partial differential equations me-
thods have been widely applied to these emerging field 
of study [4]. 
Subdivision method  
As shown in Figure 3, for vertexes ( )

0
lq with degree on l (l 

= 0,1,2, ...) subdivision level , supposed that directly ad-
jacent vertexes in the mesh is ( )
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0
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iq i n+ = can be ob-

tained by using the following vertex-point / side point 
rules.  
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Template edge point, 
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foot code of the two formulas take n as the model. 
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Use the above rules to conduct subdivision iteration on 
triangular mesh and control grid, then a smooth limit 
surface will be converged. Each vertex v of initial control 
mesh can find a corresponding point v∞  on the limit 
surface . .M uller etc put forward the formula to strike 
v∞  and its two non-collinear cut vectors 1u  and 2u  on 
limit surface, then normal direction of surface at v∞  
point can be obtained . 
 

 
Figure 1. Generation of triangular mesh point and its 

adjacent vertexes on l+1 subdivision hierarchy 

Boundary treatment, edit and modification of curves are 
as follows: 
Conduct respectively once and twice subdivision o the 
initial grid. It is not difficult to find that the subdivided 
grid is also dense in where the initial control triangle 
network is dense; relatively straight edges of control 
network on plowshare site become jagged after subdivi-
sion ; The outer edge of the wing plow and the edge of 
plows chest are not smooth, which are not expected. Its 
main causes are that subdivision rules are used for ver-
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tex-point and edge point on the border of the grid and 
inside the grid during subdivision. 
In order to eliminate the affect of subdivision process on 
the geometric properties of control mesh boundary, it is 
necessary to modify the generation rules for the vertex 
point and edge point of boundaries. 
It is needed to respectively treat borders that maintain 
smooth and straight, mark respectively the initial mesh 
vertexes .For the former, the boundary vertex point just 
needs to remain unchanged, and the boundary edge point 
only needs to do linear interpolation on the end points of 
the edge; The latter, in order to make the surface smooth 
at the boundary point, it needs to modify the weight of 
the vertex point and edge point template which take the 
boundary points as end points and the inner side edge 
point template, the modified rules are shown in Figure 
2.Among which, 

1 21/ 4    1 / 2k k= =  

 
Figure 2. Templates of vertex points and edge points in 

modified grid boundary vertex 

More generally, the boundary control method is to intro-
duce a normal into the grid. Normal control can achieve 
an arbitrary boundary surface control by changing the 
size of the right of boundary points’ subdivision rule, and 
through the subdivision process control mesh can be gen-
erated from the original breakdown of the various resolu-
tion mesh model. These grid models can be used as input 
of finite element calculation or dynamic simulation soft-
ware, through the establishment of soil plow surface 
movement along mattress mechanical model. By con-
ducting finite element calculation or simulation on the 
plow surface under different tillage speeds, tillage depth, 
soil deformation and soil condition mattress and other 
conditions of work performance and efficiency, the basis 
for the design of complex plow surface can be provided. 

2. Equation Model and Its Weak Form 
Equation models of surface diffusion flow, Will more 
flow and surface diffusion flow are listed below. Let S  
be a closed orientable surface of 3R it is needed to find a 

family of smooth and orientable surface set ( ){ }: 0s t t ≥ , 
which meet below conditions: 

( )
02 ,  (0)s

x Hn S S
t
S t

∂ = − ∆ = ∂
∂ = Γ

                   (4) 

Among which, s∆  represents the Laplace-Beltrami oper-
ator defined on surface s , R  and n respectively denote 
the mean curvature and surface normal vector of the sur-
face. Surface diffusion flow has the nature to reduce the 
volume and size. 

( )

2
02 ( ) ,  (0)S

x R R R K n S S
t
S t η

∂  = − ∆ + − =  ∂
∂ =

       (5) 

Wherein, in addition to defined operator in formula (1) , 
K represents the Gaussian curvature on the surface S. 
Surface which satisfies the equation 

22 ( ) 0S R R R K∆ + − = is called Will more surface or 
sheet surface, it occurs as a critical point of functional 
area. 

2( ):= SW S R dσ∫                        (6) 

3. Discrete of  Four Order Geometric Flows 
Equation’s finite element discretization will be described 
as below. First, introduce two finite element space 

[ ]1 2, , ...r nE span= Ω Ω Ω and [ ]1 2, ,...r nF span= Ω Ω Ω . In 

rE  and rF , carry out spatial discrete for the control ver-
tex x, mean curvature H and mean curvature normal R . 
Let T  be a quadrilateral control mesh of surface s , its 

control vertex is denoted as { }
1

n

j i
x

=
. Classification of the 

control vertexes is provided in the following. The first 
category are interior vertexes , whose location are un-
known and they are the amount to be solved in this paper , 

denoted as { } 0

1

n

j i
x

=
.For curved stitching or N-sided hole 

filling problem, it requires internal vertexes in stitching 
or patching area. The rest of the control vertexes are de-

noted as { }
0 1

n

j i n
x

= +
, they are known quantity. Continue to 

carry on classification. Denote vertex which is adjacent 

to internal vertex { } 0
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=
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2 1
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 within two circles. 

Then the remaining vertexes are denoted as { } 0

2 1
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= +
, 

the mean curvature of these vertexes is known. So un-

knowns need to be solved is the position { } 0
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=
of the 

control vertex, mean curvature { } 2
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Wherein ( )jR t  and ( )R t  respectively represents the 
mean curvature and the mean curvature vector at the ver-
tex jx . In this paper, basis functions jΩ  and jη of each 
vertex jx are all limit function form of Catmull-Clark 
subdivision format, the value at the control point jx  is 1, 
the value is 0 at the other points. Branched groups of 

jΩ and jη  are local, including the vertexes within 2 cir-
cles around control point jx . In actual calculation, the 
parameter value is taken as a unit within the quadrilateral 
Gauss nodes. If vertex ｘ ｊ is non-rule-based, partial 
subdivision can be carried out in its vicinity until Gauss 
point parameter values fall into a regular bi-cubic B-
spline surface chip. 
Put the discretization form formula (7) (8) of control ver-
tex x and mean curvature H in the finite element space 
into equation (4) (5), taking the trial function { } 0

1

n
i i=

Ω  and 

{ } 2

1

n
i i=

Ω , by the known condition it can be known 

that ( ) / 0j tx tβ β =  (when 0j nf , jx is fixed). Then put 
the items which are relative to the known control vertex 
{ }

0 1

n
i i n

x
= +

and the mean curvature { }
2 1

n
i i n

R
= +

to the right 

side of equation, then get matrix form of formula (4) (5) 
as the following  
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The elements of which are defined as follows: 
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(11) 
The dimension of the right hand side are 

( ) 3 01C R n∈ , ( ) 22C Rn∈ . 
Similarly, put equation (10) (11) into equation (12), simi-
larly, matrix form of formula (12) is as 

0

0 2 2
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(3) (3) (3)
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              (12) 

The elements of which are defined as follows: 
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        (13) 

The dimension of the right hand side are 
( ) 03 3C Rn∈ × ， ( ) 24 3C Rn∈ × . 

In the following conduct time discretization. For formula 
(14), assuming there areapproximate solution 

( ) ( )
0 0

k
n n kx x t= and ( ) ( )

2 2

k
n n kx x t=  when time kt t= . Semi-

implicit Euler scheme can be used to construct the ap-
proximate solution ( ) ( )

0 0

1 1k
n n kx x t+ = + and 

( ) ( )
2 2

1 1k
n n kx x t+ = + when ( )1k kt t t kτ+= = + , namely use 

( )
1[ ( ) ( )] /o o

k
n k n kx t x t τ+ − to replace the derivative 

( ) /onX t t∂ ∂ , surface data when kt t=  is used to calculate 
matrix ( )1M , ( )2M ， ( )1L  and ( )2L of formula (14) . 

Then result in a linear system for solving ( )
0

1k
nx + and ( )

2

1k
nx + . 

0 2 0 0 0

0 2 2

(1) ( ) (1) ( 1) ( ) (1) (1) ( )

(2) (2) ( 1) (2)

     

                                 

k k k k
n n n n n

k
n n n

M L X B M X

L M Y B

τ τ+

+

     +
    =  
        

   (14) 

Noted that although ( )1M and ( )2M of the coefficient 
matrix is symmetric positive definite, but the overall 
coefficient matrix is not symmetric positive definite. In 
this paper, the GMRES iterative method proposed by s
ａ da  is used to solve the system. 

4. Simulation and Analysis 
If the area to be filled is small, the evolution difference is 
very small. Compared to the first row in Figure 5, there is 
no significant blending surface difference of the three 
four order streams in the second row. 

4.1. Side fill holes 
Given surface mesh with holes, it is needy to construct 
the surface patches with 1G  smooth on boundary. Figure 
7 shows an frog model of N-sided hole filling. Figure 7c 
shows the restored surfaces after 2 iterations by using 
WF, the time step length is 0.00001. SDF and QSDF’s 
evolution results are similar. 

 
(a) 
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(b) 

 
(c) 

Figure 3. Frog model with N side filling hole 

4.2. Examples Verification 
Example 1: Given the control point matrix 

( )2 2

ijmatrix p
×

of the surface: 

( 1, 1,0)   ( 1,0,1)    ( 1,1,0)
(0, 1,1)    Unknown    (0,1,1)
(1, 1,0)       (1,0,1)      (1,1,0)

− − − − 
 − 
 − 

 

At this point, 4i k h n m= = = = = , B-spline surface is a 
pair of quadric surfaces with 33 control vertexes . Where-
in, the required internal control point is just a 20p , so that 
equation (1) contains only one formula. By the program 
it can be calculated that the unknown internal control 
vertexes are ( )20 0,0,0.6p = , so that the required uni-
form surface can be drawn out , as shown in Figure 8. 
The surface area is 4.213, the maximum absolute value 
of mean curvature surface is 1.701 and the average value 
is 0.791. 

 
Figure 4. Surface that contains only one internal control 

vertex 

Example 2: Given the control point matrix 

( )3 3

ijmatrix p
×

 of the desired surface: 

  (-1,-1,0)      (-1,-0.5,0.5)   (-1,0.5,0.5)      (-1,1,0)
(-0.5, -1,0.5)    Unknown      Unknown   (-0.5,1,0.5)
(0.5, -1,0.5)      Unknown      Unknown   (0.5,1,0.5)
(1, -1,0)           (1,-0.5,0.5)    (1,0.5,0.5)   (1,1,0)

 
 
 
 
 
 

 

Use bi-quadratic uniform B-spline surfaces to design, 
,i e , 4i h= = , 4n m= = , the number of control vertex-

es is 44. Among them, there are four required internal 
control vertexes, so the formula (15) contains four equa-
tions, we can calculate the four internal control vertexes: 

22 23

32 33

( 0.5, 0.5,0.375), ( 0.5,0.5,0.375),
(0.5, 0.5,0.375), (0.5,0.5,0.375).

P P
P P

= − − = −

= − =
   (15) 

The obtained B-spline minimal surfaces are shown in 
Figure 9. The surface area is 4.125, the maximum abso-
lute value of mean curvature surfaces is 6 and the aver-
age value is 1.413. 
 

 Figure 5. Surface that contains four internal control 
vertexes 

5. Conclusion 
This article organically combines the two together and 
give full play to the advantages of both, in a unified 
framework it solves some surface design problems such 
as surface blending, N  side fill holes and others which 
meet 1G  boundary conditions. This paper has successful-
ly constructed the finite element method for surfaces of 
four order geometric partial differential equations based 
on quadrilateral Catmull-Clark subdivision. 
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