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Abstract: Let G(V, E) be a digraph (directed graph) with n nodes and e arcs. Digraph G* = (V, E*) is the re-
flexive, transitive closure if v → u ∈ E* iff there is a path from v to u in G. Efficient storage of G* is impor-
tant for supporting reachability queries which are not only common in graph databases, but also serve as fun-
damental operations used in many graph algorithms. A lot of strategies have been suggested based on the 
graph labeling, by which each node is assigned with certain labels such that the reachability of any two nodes 
through a path can be determined by their labels. Among them are interval labeling, chain decomposition, 2-
hop labeling, and path-trees. However, due to the very large size of many real world graphs, the computa-
tional cost and size of labels using existing methods would prove too expensive to be practical. In this paper, 
we propose a new approach to deduct and decompose a graph into two graphs: a transitive core graph and a 
residue graph. Both are much smaller than the original graph. In this way, we transform any reachability 
query into two queries. One is over the transitive core graph and another is over the residue graph. While the 
former can always be evaluated in constant time, the latter can be done by using any existing method, but over 
a much smaller graph. We demonstrate both analytically and empirically the efficiency and effectiveness of 
our method. 
Keyword: Directed Graphs; spanning Trees; Reachability Queries; Transitive Closure Compression. 

 
1. Introduction  
Given two nodes u and v in a directed graph G(V, E), 
we want to know if there is a path from u to v. The 
problem is known as graph reachability. In many appli-
cations, such as evaluation of recursive queries in de-
ductive databases, type checking in object-oriented da-
tabases, XML query processing, social network, trans-
portation network, internet traffic analyzing, semantic 
web, and metabolic network [22], graph reachability is 
one of the most basic operations, and therefore needs to 
be efficiently supported. 
A naive method is to precompute the reachability be-
tween every pair of nodes – in other words, to compute 
and store the transitive closure (TC for short) of a graph 
as a boolean matrix M such that M[i, j] = 1 if there is a 
path from i to j; otherwise, M[i, j] = 0. Then, a reacha-
bility query can be answered in constant time. However, 
this requires O(n2) space, which makes it impractical for 
massive graphs, where n = |V(G)|. Another method is to 
compute the shortest path from u to v over a graph on 
demand. Therefore, it needs only O(e) space, but with 
high query processing cost - O(e) time in the worst case, 
where e = |E(G)|. 
There is much research on this issue to reduce space 
overhead but still keep a constant query time, such as 
those discussed in [1, 2, 4, 5, 6, 8, 9, 10, 22]. All of 
them reduce the space requirement to some extent. But 
the worst space overhead is still in the order of O(n2). In 
the case of large graphs, they cannot be efficient. 

In this paper, we investigate the problem from a differ-
ent angle: to deduct and decompose G into several 
components such that the existing labeling techniques 
can be utilized for each smaller graph without sacrific-
ing too much query time. 
Concretely, we decompose G into two smaller graphs: a 
transitive core graph Gcore and a residue graph Gr. 
When a query q is submitted, we will first evaluate q 
against Gcore, by which two paths of constant length in 
Gcore will be searched. If the query can be answered in 
this process, the task is done. Otherwise, a new query q’ 
is formed and evaluated against Gr. This can be con-
ducted by using any existing method. If we use the me-
thod discussed in [5], the whole query time of this me-
thod is bounded by O(κ), where κ is the length of a path 
explored when evaluating q against Gcore, bounded by a 
constant. Later we will see that |E(Gcore)| is bounded by 
O(kn). So the total space overhead is bounded by O(κn 
+ nrωr), where nr stands for the number of the nodes in 
Gr, and ωr for the width of Gr, defined to be the size of 
a largest node subset U of Gr such that for any pair of 
nodes u, v ∈ U there is neither a path from u to v nor 
from v to u. 
More importantly, it is a very flexible method. For dif-
ferent applications, we can control the graph decompo-
sition, i.e., to set k to different constants, to get a trade-
off of query time for space. We will show that it is a 
biased trade-off of time for space. While the query time 
increases linearly, the space overhead decreases qua-
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draticaly, in the sense that both the number of the nodes 
and the width of Gr are decreased. 
The remainder of the paper is organized as follows. In 
Section II, we review the related work. In Section III, 
we discuss the main step of our method to deduct and 
decompose a directed acyclic graph (DAG), based on 
which a transitive closure can be effectively compressed. 
In Section IV, we address an interesting problem on 
how to find spanning trees such that a graph can be de-
ducted in as few steps as possible. In Section V, we 
show a recursive graph decomposition to generate a 
series of spanning trees which may share common arcs, 
from which the transitive core graph is established. Also, 
how to evaluate reachability queries over such a graph 
is discussed. In Section VI, we discuss the maintenance 
of compressed transitive closures. Section VII is de-
voted to the experiments. Finally, a short conclusion is 
set forth in Section VIII. 

2. Related Work 
In the past two decades, many interesting labeling-
based strategies have been proposed to reduce both the 
precomputation time and storage cost with reasonable 
answering time. In the following, we review some rep-
resentative ones. 

2.1. Chain Decomposition Methods  

In [8], Jagadish suggested a method to decompose a 
DAG into node-disjoint chains. On a chain, if node v 
appears above node u, there is a path from v to u in G. 
Then, each node v is assigned an index (i, j), where i is 
a chain number, on which v appears, and j indicates v’s 
position on the chain. These indexes can be used to 
check reachability efficiently with O(µn) space over-
head and O(1) query time, where µ is the number of 
chains. However, to find a set of chains for a graph, 
Jagadish’s algorithm first finds a minimized set of 
node-disoint paths by solving a min flow problem, and 
then stitches some paths together to form a chain. This 
algorithm needs O(n3) time (see page 566 in [8]). In 
addition, the number µ of the produced chains is nor-
mally much larger than the minimal number of chains. 
In the worst case, µ is O(n).  
The method discussed in [5] greatly improves Jaga-
dish’s method. It needs only O(n2 + ω1.5n) time to de-
compose a DAG into a minimum set of node-disjoint 
chains, where ω represents G’s width. Its space over-
head is O(ωn) and its query time is bounded by a con-
stant. In [6], the concept of the so-called general span-
ning tree is introduced, in which each arc corresponds 
to a path in G. Based on this data structure, the real 
space requirement becomes smaller than O(ωn), but the 
query time increases to logω. 

2.2. Interval based Methods 

In [1], Agrawal et al. proposed a method based on in-
terval labeling. This method first figures out a spanning 
tree T and assign to each node v in T an interval (a, b), 
where b is v’s postorder number (which reflects v’s rela-
tive position in a postorder traversal of T); and a is the 
smallest postorder number among v and v’s descendants 
with respect to T (i.e., all the nodes in T[v], the subtree 
rooted at v). Another node u labeled (a’, b’) is a descen-
dant of v (with respect to T) iff a ≤ b’ < b. This idea 
originates from Schubert et al. [1]. In a next step, each 
node v in G will be assigned a sequence L(v) of inter-
vals such that another node u in G with interval (x, y) is 
a descendant of v (with respect to G) iff there exists an 
interval (a, b) in L(v) such that a ≤ y < b. The length of 
such a sequence (associated with a node in G) is 
bounded by O(λ), where λ is the number of the leaf 
nodes in T. So the time and space complexities are 
bounded by O(λe) and O(λn), respectively. The query-
ing time is bounded by O(logλ). In the worst case, λ = 
O(n). 
The method discussed in [22] can be considered as a 
variant of the interval based method, and called Dual-I, 
specifically designed for sparse graphs G(V, E). As with 
Agrawal et al.’s, it first finds a spanning tree T, and 
then assigns to each node v a dual label: [av, bv) and (xv, 
yv, zv). In addition, a t × t matrix N (called a TLC matrix) 
is maintained, where t is the number of non-tree arcs 
(arcs not appearing in T). Another node u with [au, bu) 
and (xu, yu, zu) is reachable from v iff au ∈ [av, bv), or 
N(xv, zu) - N(yv, zu) > 0. The size of all labels is bounded 
by O(n + t2) and can be produced in O(n + e + t3) time. 
The query time is O(1). As a variant of Dual-I, one can 
also store N as a tree (called a TLC search tree), which 
can reduce the space overhead from a practical view-
point, but increases the query time to logt. This scheme 
is referred to as Dual-II. 

2.3. 2-hop Labeling 

The method proposed by Cohen et al. [4] labels a graph 
based on the so-called 2-hop covers. It is also designed 
for sparse graphs. A hop is a pair (h, v), where h is a 
path in G and v is one of the endpoints of h. A 2-hop 
cover is a collection of hops H such that if there are 
some paths from v to u, there must exist (h1, v) ∈ H and 
(h2, u) ∈ H and one of the paths between v and u is the 
concatenation h1h2. Using this method to label a graph, 
the worst space overhead is in the order of O(n). The 
main theoretical barrier of this method is that finding a 
2-hop cover of minimum size is an NP-hard problem. 
So a heuristic method is suggested in [4], by which each 
node v is assigned two labels, Cin(v) and Cout(v), where 
Cin(v) contains a set of nodes that can reach v, and Cout(v) 
contains a set of nodes reachable from v. Then, a node u 
is reachable from node v if Cin(v) ∩ Cout(v) ≠ Φ. Using 
this method, the overall label size is increased to 
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O(n e logn). In addition, a reachability query takes 
O( e ) time because the average size of each label is 
above O( e ). The time for generating labels is O(n4).  

2.4. Path-tree Decomposition 

Recently, Jin et al. [9, 10] discussed a new method, by 
which a DAG G is decomposed into a set of node-
disjoint paths. Then, a weighted directed graph Gw 
(called path-graph in [9]) is constructed, in which each 
node represents a path and there is an arc (i, j) if on path 
i there is a node connected to a node on path j. The 
weight associated with (i, j) is the number of such con-
nections. Then, find a maximum spanning tree Tw 
(called path-tree) of Gw and label the nodes in Tw with 
an interval in a way similar to Agrawal et al.’s. Togeth-
er with the labels assigned to the node on all the paths, 
the intervals can be used to check part of reachability. 
To be a complete strategy, each node v has to be asso-
ciated with a set, denoted Rc(v), such that all the des-
cendants of v, which appear on a path are dominated by 
a node in Rc(v). In the worst case, the size of Rc(v) is 
bounded by λ, the number of the leaf nodes of a span-
ning tree of G. Therefore, the space complexity of this 
method is O(λn). The query time and the labeling time 
are bounded by O(log2λ) and O(λe), respectively. Theo-
retically, both the space requirement and the query time 
of this method is worse than Agrawal’s [1]. 

2.5. GRAIL 

The method proposed by Yildirim et al. [23] is a light-
weight indexing structure. It traverses G for several 
times to create an interval sequence for each node, used 
as a filter as follows. Let Lu = 1

uL , …, k
uL  and Lv 

= 1
vL , …, k

vL  be the interval sequences of u and v, re-

spectively. If there exists i (i ∈ {1, …, k}) such that i
uL  

⊄ i
vL , u is definitely not a descendant of v. But if for 

all i ∈ {1, …, k} i
uL  ⊆ i

vL , it cannot be determined 
whether u is a descendant of v, or vice versa. In this 
case, the whole G will be searched in the depth-first 
manner, but with the label sequences used to prune the 
search space. The labeling time of this method is 
bounded by O(k(n + e). If k is chosen as a constant, the 
index size is proportional to O(n) and can be estab-
lished very fast. But in the worst case, the query time is 
O(e) as if no index is established. 
There are some other graph labeling methods, such as 
the method using signatures [20], PE-Encoding [3] and 
PQ-Encoding [24]. The idea of the signature-based me-
thod [20] is to assign to each node a signature (which is 
in fact a bit string) generated using a set of hash func-
tions. The space complexity is O(ln), where l is the 
length of a signature. But this encoding method suffers 

from the so-called signature conflicts (two nodes are 
assigned the same signature). Moreover, in the case of 
DAGs, a graph needs to be decomposed into a series of 
trees; and no formal decomposition was reported in that 
paper. The PE-Encoding [3] and the PQ-Encoding [24] 
are similar to the 2-hop labeling, but with higher com-
putational complexities. The methods discussed in [15, 
16] reduces 2-hop’s labeling complexity from O(n4) to 
O(n3), but are still not applicable to massive graphs. The 
method proposed in [2] is a geometry-based algorithm 
to find high-quality 2-hop covers. It also improves the 
2-hop labeling by avoiding the computation of transi-
tive closures, which is required by Cohen’s to find 2-
hop covers. However, it has the same theoretical com-
putational complexities as Cohen’s method [4]. Finally, 
the method discussed in [21] is suitable only for planar 
graphs with O(nlogn) labeling time and O(nlogn) space. 
The query time is O(1). Finally, the query evaluation 
mechanism of deductive databases can be adapted to 
handle this problem.  
In the following table, we compare our labeling method 
with the representative approaches. 

 
Table 1. Comparison of Strategies 

 Query time Labeling time Space over-
head 

Graph traversal O(e) 0 O(e) 
Jagadish [8] O(1) O(n3) O(µn ) 

Interval-based[1] O(logn) O(ne) O(λn) 
Dual-I [22] O(1) O(n + e + t3) O(n + t2) 
Dual-II [22] O(logt) O(n + e + t3) O(n + t2) 

2-hop [4] O(e1/2) O(n4) O(nelogn) 
Matrix-based[25] O(1) O(n3) O(n2) 

Tree-path [9] O(log2λ) O(λe) O(λn) 
GRAIL [23] O(e) O(ke) O(kn) 

Chen [5] O(1) O(n2 + ω1.5n) O(ωn) 

ours O(k) O(κe + ωr
1.5nr) O(κn + ωrnr) 

 
Note that in the above table κ and k are two different 
constants. 
In the worst case, both µ and λ are in the order of O(n) 
and t is in the order of O(e). 

3.Graph Deduction 
In this section, we discuss a new graph decomposition 
approach to compress transitive closures. First, we give 
some basic definitions related to spanning trees in Sub-
section A. Then, in Subsection B, we demonstrate our 
basic graph decomposition based on the concept of crit-
ical nodes, as well as a method for checking the reacha-
bility by using such a graph decomposition. Finally, we 
show how to efficiently recognize the critical nodes in a 
graph in Subsection C. 
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3.1. Basic Definition 

Without loss of generality, we assume that G is acyclic 
(i.e., G is a DAG.) However, if G contains cycles, we 
can find all the strongly connected components (SCCs) 
of G by using Tarjan’s algorithm in O(e) time [18] and 
collapse each of them into a representative node, and 
transform G to a DAG [14]. Clearly, each node in an 
SCC is equivalent to its representative node as far as 
reachability is concerned. 
We also use u → v to stand for an arc from u to v in a 
directed graph (and (u, v) for an edge in an undirected 
graph with u and v as endpoints.) 
It is well known that the preorder traversal of G intro-
duces a spanning tree (forest) T. With respect to T, E(G) 
can be classified into four groups: 
• tree arcs (Etree): arcs appearing in T. 
• cross arcs (Ecross): any arc u → v such that u and v 

are not on the same path in T. 
• forward arcs (Eforward): any arc u → v not appearing 

in T, but there exists a path from u to v in T 
• back arcs (Eback): any arc u → v not appearing in T, 

but there exists a path from v to u in T. 
All cross, forward, and back arcs are referred to as non-
tree arcs. (But in a DAG, we do not have back arcs 
since a back arc implies a cycle.) For illustration, con-
sider the DAG shown in Figure 1. For it, we may find a 
spanning tree as shown by the solid arrows in Figure 1. 
(In the figure, each non-tree arc is represented by a 
dashed arrow.) 
As in [22], we can assign each node v in T an interval 
[αv, βv), where αv is v’s preorder number (denoted 
pre(v)) and β v - 1 is equal to the largest preorder num-
ber among all the nodes in T[v]. So another node u la-
beled [αu, β u) is a descendant of v (with respect to T) iff 
αu ∈ [αv, βv) [22], as illustrated in Fig. 1. If αu ∈ [αv, 
βv), we say, [αu, β u) is subsumed by [αv, βv). This me-
thod is called the tree labeling. 

 
3.2. Graph Decomposition and Reachability Check-
ing 

In this subsection, we discuss a kind of decomposition 
of G(V, E): a spanning tree T and a subgraph Gc such 
that |V(Gc)| < |V|. What we want is to transform the rea-
chability checking of any two nodes in G to a checking 
over T and a checking over Gc. Obviously, Gc has to 
contain Ecross. But some arcs from T need to be included 

and carefully recognized. For this purpose, we intro-
duce some new concepts. 
Denote by V’ the set of all the endpoints of the cross 
arcs. We have V’ = Vstart ∪ Vend, where Vstart contains all 
the start nodes while Vend all the end nodes of the cross 
arcs. For example, for the graph shown in Figure 1, we 
have Vstart = {h, g, f, d} and Vend = {e, g, c, d, k}. No 
attention is paid to the forward arc (a, e) in the graph 
since it can be simply removed without impacting the 
checking of reachability. 
The first concept is the so-called crossing range, which 
is a second pair of integers associated with each node v 
∈ V, defined below. 
Definition 1 (crossing range) Let T be a spanning tree 
(forest) of G. Let v be a node with the children v1, …, vj 
in G. Let [αi, βi) (i = 1, …, j) be the interval of vi. Set av 
= mini{αi} and bv = maxi{αi}. Then, {av, bv} is called 
the crossing range of v.   
For technical convenience, for any node v without child 
nodes in G, both its av and bv are set to be αv. For ex-
ample, with respect to the spanning tree shown in Fig-
ure 1, the crossing ranges of the nodes in G can easily 
be computed, as shown in Figure 2.  

 
 
Definition 2 (critical nodes) A node v in a spanning tree 
T of G is critical if the following conditions are satis-
fied: 
• There is a subset U of Vstart with |U| > 1 such that 

for any two nodes u1, u2 ∈ U they are not related by 
the ancestor/descendant relationship and v is the 
lowest common ancestor of all the nodes in U. 

• For each u ∈ U, its crossing range {au, bu} is not 
within T[v]. That is, au or bu is a preorder number 
not appearing in T[v].    

All the critical nodes with respect to T are denoted by 
Vcritical. For example, in the spanning tree shown in Fig. 
1, node e is the lowest common ancestor of {f, g} and 
both f and g are in Vstart. In addition, the crossing ranges 
of f and g are not within T[e] (see Figure 2). So e is a 
critical node. We also notice that node a is the lowest 
common ancestor of {d, f, g, h}. But the crossing ranges 
of all the four nodes are in T[a]. Thus, a is not a critical 
node. In the same way, we can check all the other nodes 
and find that Vcritical = {e}. 
The reason for imposing second condition  in the above 
definition is that if any cross arc going out of a node in 
T[v] reaches only a node in T[v], then the reachability 
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between v and any other node in G can be checked by 
the tree labeling. So it is not necessary to include v in Gc 
if v ∉ Vstart  ∪ Vend. 
Now we consider a tree (forest) structure Tc, called a 
critical tree of G (with respect to T), which contains all 
the nodes in Vcritical ∪ Vstart ∪ Vend. In Tc, there is an arc 
from u to v if there is a path P from u to v in T and P 
contains no other node in Vcritical ∪ Vstart ∪ Vend, as illu-
strated in Figure 3(a). 
Denote Tc ∪ Ecross by Gc (see Figure 3(b).) Then, T and 
Gc make up a decomposition of G. It can be seen that 
V(Gc) is much smaller than V. 

 
 
For any two node u, v appearing on a path in T, their 
reachability can be checked using their associated inter-
vals. However, our question is, if they are not on the 
same path in T, can we check their reachability by using 
Gc? 
To answer this question, we need another concept, the 
so-called anchor nodes. 
First, for any critical node v, we slightly change its 
crossing range as follows. 
• Assume that U is a subset of Vstart such that v is the 

lowest common ancestor of all the nodes in it and 
satisfies condition (1) and (2) in Definition 2. 

• Set  av ←  min{minu∈U{au}, av}; 
   bv ←  max{maxu∈U{bu}, bv}. 
For instance, node e’s original crossing range is {8, 9} 
(see Fig. 2). The crossing ranges of node f and g are {5, 
5} and {2, 5}, respectively. So e’s original range will be 
changed to {2, 9}. 
Next, we denote by C(v) all the critical nodes in T[v] 
plus all those start nodes of the cross arcs which appear 
in T[v]. We consider a maximal subset of C(v) such that 
each node in it does not have an ancestor in C(v). De-
note such a subset as Cs(v). It can be seen that in Cs(v) 
there is at most one node u such that its crossing range 
is not within T[v]. Otherwise, a new critical node in T[v] 
will be created (see Definition 2), which is an ancestor 
of u and in C(v), contradicting the fact that u  ∈ Cs(v) 
and thus has no ancestor in C(v). 
Definition 3 (anchor nodes) Let G be a DAG and T a 
spanning tree of G. Let v be a node in T. We associate 
two nodes with v as below. 
• A node y ∈ Cs(v) is called an anchor node (of the 

first kind) of v if its crossing range is not within 
T[v], denoted v*. If such a node does not exist, v* 
is set to be the special symbol “-”. 

• A node w is called an anchor node (of the second 
kind) of v if it is the lowest ancestor of v (in 
T),which has a cross incoming arc. w is denoted v**. 
If such a node does not exist, v** is set to be “-”.    

For example, in the graph shown in Fig. 1, r* = e. It is 
because node e is a critical node in Cs(r) and its cross-
ing range {2, 9} (note that the crossing range of a criti-
cal node is changed) is not within T[r]. But r** does not 
exist since it does not have an ancestor which has a 
cross incoming arc. In the same way, we find that e* = 
e** = e. That is, both the first and second kinds of anc-
hor nodes of e are e itself. We can easily recognize the 
anchor nodes for all the other nodes in that graph.  

3.3. Recognizing Critical Nodes 

From the discussion in the previous subsection, we 
know that all the critical nodes need to be recognized to 
construct Gc. Now we discuss an efficient algorithm for 
this task.  
We will search T bottom up and produce a subtree T’ of 
T such that only the critical nodes and the nodes from 
Vstart are included. Initially, T’ is set to ∅, and all the 
nodes in Vstart are marked. Then, during the traversal of 
T, any node belonging to Vstart or any critical node, once 
it is recognized, will be inserted into T’. To this end, 
each node v inserted into T’ will be associated with two 
links, denoted parent(v) and left-sibling(v), respectively. 
parent(v) is used to point to the parent of v in T’ while 
left-sibling(v) points to a node in T’ created just before v, 
which is not a descendant of v in T. 
Concretely, parent(v) and left-sibling(v) will be created 
as below. 
• Let v be the node currently inserted into T’. 
• If v is not the first node inserted into T’, we do the  

following: 
Let v’ be the node inserted just before v. If v’ is not a 
child (descendant) of v, create a link from v to v’, called 
a left-sibling link and denoted as left-sibling(v) = v’. If 
v’ is a child (descendant) of v, we will first create a link 
from v’ to v, called a parent link and denoted as par-
ent(v’) = v. Then, we will go along the left-sibling chain 
starting from v’ until we meet a node v’’ which is not a 
child (descendant) of v. For each encountered node u 
except v’’, set parent(u) ← v. Finally, set left-sibling(v) 
← v’’.   
Figure 4 is a pictorial illustration of this process. 

In Figure 4(a), we show the navigation along a left-
sibling chain starting from v’ when we find that v’ is a 
child (descendant) of v. This process stops whenever 
we meet v’’, a node that is not a child (descendant) of v. 
Figure 4(b) shows that the left-sibling link of v is set to 
point to v’’, which is previously pointed to by the left-
sibling link of v’s left-most child. 
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Extending the above process with the recognition of 
critical nodes and the computation of crossing ranges, 
we get an efficient algorithm for finding all the critical 
nodes. 
Algorithm find-critical(T) 
begin 
1. T’ ← ∅.  Mark any node in T, which belongs to Vstart. 
2. Let v be the first marked node encountered during the bottom-

up searching of T. Insert v in T’. 
3. Let u be the currently encountered node in T. Let u’ be the node 

inserted into T’ just before u. Do (4) or (5), depending on 
whether u is a marked node or not. 

4. If u is marked, then insert u into T’ and do the following. 
 (a) If u’ is not a child (descendant) of u, set left-sibling(u) = u’ 

(i.e., a link from u to u’). 
 (b) If u’ is a child (descendant) of u, we will first set parent(u’) 

= u. Then, we will go along a left-sibling chain starting 
from u’ until we meet a node u’’ which is not a child (des-
cendant) of u. For each encountered node w except u’’, set 
parent(w) ← u. Also, set left-sibling(u) ← u’’. (See Fig. 
6(b) for illustration.) Calculate initial au and bu according to 
Definition 1.  Let W be the set of all the encountered nodes 
during the navigation along the left-sibling chain (not in-
cluding u’’). Set au ← min{minw∈W{aw}, au} and bu ← 
max{maxw∈W{bw}, bu}. 

5. If u is a non-marked node, then do the following. 
 (c) If u’ is not a child (descendant) of u, u is ignored. 
 (d) If u’ is a child (descendant) of u, we will go along a left-

sibling chain starting from u’ until we meet a node u’’ 
which is not a child (descendant) of u. If there are more 
than one node in W such that their crossing ranges not 
within T[u], insert u into T’, and compute au and bu as (4.b). 
Otherwise, u is ignored. 

end 
In the algorithm, each node v belonging to Vstart is simp-
ly inserted into T’, by which its {av, bv} is computed. 
(See 4.a and 4.b. in the algorithm.) For a node not be-
longing to Vstart, we will check whether it satisfy the 
conditions given in Definition 2. If it is the case, it will 
be inserted into T’. At the same time, its crossing range 
will be calculated. Otherwise, it will be ignored. (See 
5.c and 5.d in the algorithm.) 
Obviously, the algorithm requires only O(e) time since 
each node in T is accessed at most two times and for 
each node v out-degree(v) arcs will be visited. 

4. Finding Optimal Spanning Trees 
For a given DAG G(V, E) , we can find different span-
ning trees by exploring G in different ways. Especially, 
for different spanning trees, the size of Gc can be differ-
ent. Clearly, what we want is to find such a spanning 
tree that Gc is minimized. But, how to find such a span-
ning tree? 

Let ℑ(G) be the family including all the spanning trees 
of G. For T ∈ ℑ(G), denote by rT(v) the number of the 
cross arcs coming to v with respect to T. We define 

R(T) = ∑
∈Vv

T vr )( .  

Intuitively, the smaller R(T) is, the smaller the size of 
Gc. So our optimization problem is to find a T such that 
R(T) is minimum. Unfortunately, there are exponential-
ly many spanning trees for a given DAG. So it is un-
likely to find an optimal one in polynomial time. In fact, 
it is NP-complete. 
In the following discussion, we will first prove the NP-
completeness of the problem. Then, we will present a 
top-down algorithm to find a spanning tree of G with 
fewer cross arcs than a traditional depth-first search. 
Next, we will discuss a heuristic which can be inte-
grated into our top-down algorithm to mitigate the prob-
lem to some extent. 

4.1. NP-completeness 

First, we notice that 
R(T) = e – n + 1 - ∑

∈Vv
T vf )( , 

where fT(v) is the number of the forward arcs coming to 
v with respect to T. Thus, minimizing R(T) is equivalent 
to maximizing 

F(T) = ∑
∈Vv

T vf )( . 

Therefore, to show the NP-completeness of minimizing 
R(T), we can  show the NP-completeness of maximiz-
ing F(T).  
Let P be a path in T. Let u, v be two nodes on P. We 
call the forward arc from u to v an attached arc of P. 
Obviously, to maximize F(T), we need to maximize the 
number of the attached arcs of each path in T. 
Now we consider a much easier problem to find a T 
such that it has a path with the maximal number of at-
tached arcs, and show that even this problem is NP-
complete. 
For this purpose, we define the following decision prob-
lem: 
Input: A DAG G and a positive integer k ≤ n. 
Question: Is there a spanning tree T such that it con-
tains a path P of length k with the number of the at-
tached arcs of P equal to (k – 1)(k – 2)/2. 
We call this problem a maximum P-attachment problem. 
Proposition 2: The maximum P-attachment is NP-
complete. 
Proof: It is easy to see that the problem is in NP: An 
algorithm can generate all spanning trees T of G and 
check each T to see whether it has a maximum P-
attachment. 
The completeness for NP is shown by a reduction from 
the basic NP-complete problem SATISFIABILITY [7]. 
Let an instance of SATISFIABILITY be given by a 

u’’ is not a 
child of u. v 

v’ …v’’ 

v 

v’ …v’’ 

left-sibling( u’)

(a) (b) 

Fig. 4: Illustration for the Construction of T’ 
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collection of clauses C = {c1, …, ck}. Each ci is of the 
form xi1 ∨ xi2 ∨ …, 

iikx , where xij is a literal. We form a 
DAG in two steps: 
1. Generate an undirected graph G’, whose nodes are 

pairs of integers [i, j], for 1 ≤ i ≤ k and 1 ≤ j ≤ ki. A 
node [i, j] is connected to another node [k, l] if both 
of the following hold: 
• i ≠ j, and 
• xij ≠ ¬xkl. 

2. Explore G’ in the depth-first manner to change it to 
a DAG G’’ as below: 
• If an edge (u, v) in G’ is explored from u to v, 

create an arc u → v in G’’. 
• In G’’, reverse the direction of any back arc. 

(Then, the resulting G’’ must be a DAG.)  
Obviously, the DAG can be constructed in polynomial 
time. 
Now we claim that there is a satisfying truth assignment 
for C if and only if there is spanning tree containing a 
path P of length k such that the number of the attached 
arcs of P equal to (k – 1)(k – 2)/2. It is because if C is 
satisfiable, there must be a clique of size k. Exploring 
the clique in the depth-first search and then reverse any 
back arc, we will get a path of length k with the number 
of the attached arcs equal to (k – 1)(k – 2)/2. 

Next assume that T is a spanning tree of G’’, which 
contains a path P of length k with the number of the 
attached arcs equal to (k – 1)(k – 2)/2. Assigning a val-
ue to the variable in each literal x corresponding to a 
node on P such that x is true while a value to the varia-
ble in any other literal y such that y is false, we get a 
satisfying truth assignment for C for the following rea-
son. First, each node corresponds to a literal in a differ-
ent clause. Second, for each pair of literals represented 
by two nodes on the path, they are not negation of each 
other. 4.2. A Top-down Slgorithm 

In this subsection, we give our top-down algorithm to 
explore G, which is able to find a spanning tree with 
more forward arcs than a traditional depth-first search. 
The main idea behind the algorithm is to recognize a 
kind of “triangles” as illustrated in Figure 5(a), during a 
depth-first search. 

 
Figure 5. Illustration for “Triangles” Encountered during 

a DFS 

In Figure 5(a), assume that node c is the current node 
along a path from a to c, and b is one of c’s children, 
but has been visited before (along the arc from a to b). 
We can remove the tree arc a → b and make c → b a 
tree arc. Then, a → b becomes a forward arc as illu-
strated in Figure 5(b). 
In order to find such kind of transformations, we ar-
range a boolean array B such that B[i] = 1 indicates that 
node i is on the current path during the depth-first 
search. Otherwise, B[i] = 0. For simplicity, we assume 
that G is a rooted graph. If it is not the case, a virtual 
root is created and connected to all those nodes that 
have no incoming arcs. Then, by the current path, we 
mean the path from the root to the currently encoun-
tered node. Let v1 → v2 → … → vk be the current path. 
And we are going to access one of vk’s children. At this 
moment, in B all B[vj]’s must be set to 1 (j = 1, …, k) 
while all the other entries are 0. 
In the following algorithm, three special data structures 
are used: 
S – a stack to control the depth-first search; 
C(v) – a list containing all the children of v in G. 
c-list(v) – a list of all those children of v in G, which 
have not yet been visited. 
CT(v) – a list containing all the children of v in T. 

Algorithm DFS-f(G) 
begin 
1. Each entry of B is set 0; 
2. c-list(v) := C(v) for each v; 
3. push(root, S); mark root ; B[root] := 1;  
4. while (S ≠ φ) do { 
5.  v := top(S); 
6.  while c-list(v) ≠ φ do { 
7.   let u be the first node in c-list(v), chosen according   
   to a heuristic if any; 
8.   if u is marked then { 
9.    let u’ be the parent of u in T; 
10.    if B[u’] = 1 then { 
11.     remove u from CT(u’); add u to CT(v); 
12.    } 
13.    remove u from c-list(v); 
14.   } 
15.   else {  add u to CT(v); 
16.   push(u, S); mark u; B[u] := 1; v := u; } 
17.  } 
18.  w := pop(S); B[w] := 0; 
19. } 
end 
In the above algorithm, the stack S is used to keep the 
current path. Then, for each node w in S we have B[w] = 
1. Let v be the node at the top of S (i.e., top(S) = v; see 
line 5.) We will check the first element u in c-list(v) 
(note that initially c-list(v) contains all the children of v; 
see line 2.) Two cases need to be distinguished: u is 
marked (showing that v has been visited before), or not 
marked. If u is marked, we will check whether its parent 
u’ (in the spanning tree T created up to now) is on the 
current path by checking B[u’] (see lines 7 – 8.) If is the 
case, a transformation will be conducted (see line 11.) 

… … 

a 

b 

c 

 

… … 
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b 

c 

(a) (b) 
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Otherwise, u is simply removed from c-list(v) (see line 
13.) If u is not marked, it will be added to T as one of 
v’s children (see line 15.) Then, u is pushed into S and 
marked (see line 16.) In a next step, one of u’s children 
will be visited (see the assignment statement: v := u in 
line 16). We repeat this process until we meet a node v’ 
with c-list(v’) = φ . In this case, the top element of S is 
popped out and the corresponding entry in S is set to 0 
(see line 18.) 

4.3. Heuristics 

Now we discuss a kind of heuristics, which enables us 
to get a spanning tree with even more forwards arcs. 
For this purpose, we arrange a preprocessor to stratify 
the nodes of a graph into different levels to get some 
information on the structure of the graph. 
Let G(V, E) be a DAG. We decompose V into subsets 
V0, V1,..., Vh such that V = V0 ∪ V1 ∪ ... ∪ Vh and 
each node in Vi has its children appearing only in V0, ..., 
Vi-1 (i = 0, ..., h - 1), where h is the height of G, i.e., the 
length of the longest path in G. For each node v in Vi, 
we say, its level is i, denoted l(v) = i. We also use Cj(v) 
(j > i) to represent a set of links with each pointing to 
one of v’s chidren, which appears in Vj. Therefore, for 
each v in Vi, there exist i1, ..., ik (il < i, l = 1, ..., k) such 
that the set of its children equals )(

1
vCi  ∪ ... ∪ 

)(vC
ki . Such a DAG stratification can be done in O(e) 

time, by using the following algorithm, in which we use 
G1\G2 to stand for a graph obtained by deleting the arcs 
of G2 from G1; and G1 ∪ G2 for a graph obtained by 
adding the arcs of G1 and G2 together. In addition, d(v) 
represents v’s out-degree. 
Algorithm graph-stratification(G) 
begin 
1. V0 := all the nodes with no outgoing arcs; 
2. for i = 0 to h - 1 do 
3. {W := all the nodes that have at least one child in Vi; 
4.  for each node v in W do 
5.  {let v1, ..., vk be v’s children appearing in Vi; 
6.   Ci(v) := {v1, ..., vk}; 
7.   if din(v) > k then remove v from W;}; 
8.   G := G\{v → v1, ..., v → vk}; 
9.   d(v) := d(v) - k; 
10.   Vi+1 := W; 
11.  } 
end 

In the above algorithm, we first determine V0, which 
contains all those nodes having no outgoing arcs (see 
line 1). In the subsequent computation, we determine 
V1, ..., Vh. In order to determine Vi (i > 0), we will first 
find all those nodes that have at least one child in Vi-1 
(see line 3), which are stored in a temporary variable W. 
For each node v in W, we will then check whether it 
also has some children not appearing in Vi-1, which can 
be done in a constant time as demonstrated below. Dur-
ing the process, the graph G is reduced step by step, and 

so does d(v) for each v (see lines 8 and 9). First, we 
notice that after the jth iteration of the out-most for-loop, 
V0  ..., Vj are determined. Denote Gj(V, Ej) the 
changed graph after the jth iteration of the out-most for-
loop. Then, any node v in Gj, except those in V0 ∪ ... 
∪ Vj, does not have children appearing in V0 ∪ ... ∪ 
Vj-1. Denote dj(v) the out-degree of v in Gj. Thus, in or-
der to check whether v in Gi has some children not ap-
pearing in Vi-1, we need only to check whether di(v) is 
strictly larger than k, the number of the child nodes of v 
appearing in Vi-1 (see line 7). 
During the process, each arc is accessed only once. So 
the time complexity of the algorithm in bounded by 
O(e). 
As an example, consider the graph shown in Figure 1. 
Applying the above algorithm to this graph, we will 
generate a stratification of the nodes as shown in Figure 
6.  
In Figure 6, the nodes of the DAG shown in Fig. 1 are 
divided into seven levels: V0 = {k}, V1 = {p}, V2 = {d, 
c}, V3 = {f, g}, V4 = {e, f, i}, V5 = {b, r, h}, and V6 = 
{a}. Associated with each node at each level is a set of 
links pointing to its children at different levels below. 
In terms of the graph stratification, we define a heuristic.  
Let v be a node appearing at level i, with a set of links 
pointing to its children: )(

1
vCi   ..., )(vC

ki (il < i, l = 

1, ..., k). We will associate it with a number σ(v), calcu-
lated as below: 
σ(v) = (i - i1)| )(

1
vCi | + … + (i - ik)| )(vC

ki |, 
in which a child node at a lower level receives a larger 
weight since the possibility for a node to be incident to 
a forward arc increases as its level decreases. 
Then, our intention is to choose first the node with the 
highest priority number at each step in a DFS-f search. 
However, for the purpose of heuristics, we will use the 
following number to take all the descendants of v into 
account: 

ϖ(v) = ( )
( )

∑
∈ vdescu

u
Vhd

σ
||

1
2 , 

where d is the largest out-degree of the nodes in G, and 
desc(v) is a set containing all the descendants of v, in-
cluding v itself. Note that if we work bottom-up all 
ϖ(v)’s can be produced in O(e) time. 
This heuristic can be used in the DFS-f search in such a 
way that each time we choose a child from c-list(v) the 
node with the largest ϖ–value is selected. The tie is 
resolved arbitrarily. 
For example, if we use this heuristic to control a DFS-f 
search of the graph shown in Fig. 1, we will create a 
spanning tree as shown by the solid arcs in Figure 4.  
The search starts at root a, and then go to h since ϖ(h) 
is larger than both ϖ(r) and ϖ(b). From h we will go to 
e (since ϖ(e) is larger than both ϖ(i) and ϖ(j)), and then 
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go to g (since ϖ(g) is larger than ϖ(f)). Repeating this 
process, we will generate that spanning tree. However, 
with respect to it we have only 5 cross arcs. But with 
respect to the spanning tree shown in Fig. 1, we have 7 
cross arcs. For this example, a set of 5 cross arcs is in 
fact minimum since there are only 3 arcs, for which 
there is a path of length ≥ 2 connecting their endpoints; 
and altogether there are 8 non-tree arcs. 

 
 

5. Recursive Graph Deduction 
We note that Gc itself can be decomposed, leading to a 
further space decrement. Repeating this operation, we 
will get a recursive decomposition of G. In this subsec-
tion, we elaborate this process. 
Let G0 be a DAG. Denote by T0 a spanning tree of G0. 
Denote by 0

crossE  the set of all the cross arcs with respect 
to T0. Then, as discussed in Section III, T0 and G1 = 0

cT  
∪ 0

crossE make up a decomposition of G0, where 0
cT  is the 

critical tree of G0. Recursively decomposing G1, we will 
find a series of tree structures: 

T0, T1, ..., Tk-1, (k ≥ 1), 
such that T0 is a spanning tree of G0 and each Ti (i = 
1, ..., k - 1) is a spanning tree of Gi = 1−i

cT  ∪ 1−i
crossE , 

where 1−i
cT is the critical tree of Gi-1, and 1−i

crossE is a set of 
all the cross arcs with respect to Ti-1. We refer to Gk as 
the residue graph of G, denoted as Gr. It can be a graph 
or a tree. 
In this way, we are able to associate each node v in G0 
with two sequences: an interval sequence and an anchor 
node sequence to check reachability: 

[ v
0α , v

0β ), ..., [ v
jα , v

jβ ),(j ≤ k - 1), 
where each [ v

iα , v
iβ ) is an interval generated by labe-

ling Ti; 
( vx0 , vy0 ), ..., ( v

lx , v
ly ),(l ≤ j), 

where each v
ix  is a pointer to an anchor node of the first 

kind (a node appearing in Gi+1) while each v
iy  a pointer 

to an anchor node of the second kind (also, a node in 

Gi+1). Each ( v
ix , v

iy ) can be generated as described in 
Section III. 
We notice that the anchor node sequences imply a 
graph, in which there exists an arc u → v iff there is an 
entry <x, y> in the anchor node sequence associated 
with u such that x = v, or y = v. The arc is labeled with 
{i, *} or {i, **} with i used to indicate that <x, y> is the 
ith entry in the corresponding anchor node sequence. If 
x = v, the arc is labeled with {i, *}. If y = v, the arc is 
labeled with {i, **}. We refer to such a graph as a tran-
sitive core graph of G (or simply core graph of G) and 
denote it by Gcore. 
In order to check whether v is an ancestor of u, we will 
search two paths in Gcore, starting from v and u, respec-
tively. The path starting from v, referred to as Pv, con-
tains only the arcs labeled with (i, *) while the path 
starting from u, referred to as Pu, contains only the arcs 
labeled with (i, **). Each time we reach two nodes v’ 
and u’ through two arcs labeled respectively with (i, *) 
and (i, **), we will check whether [ v

i
′α , v

i
′β ) subsumes 

[ u
i

′α , u
i

′β ). (Remember that each node in G0 = G is as-
sociated with an interval sequence [ v

0α , v
0β ), ..., [ v

mα , 
v
mβ ) for some m ≥ 0.) If it is the case, v is an ancestor of 

u. Otherwise, we traverse along Pv and Pu, reaching v” 
and u’’ through two arcs labeled respectively with (i + 1, 
*) and (i + 1, **) and checking [ v

i
′′

+1α , v
i

′′
+1β ) against [ u

i
′′

+1α , 
u
i

′′
+1β ). We continue this process. After l steps for some l, 

we will meet two nodes v’’’ and u’’’ such that v’’’ does 
not have an out-going arc labeled with (l + 1, *) or u’’’ 
does not have an out-going arc labeled with (l + 1, **). 
If [ v

l
′′′α , v

l
′′′β ) subsumes [ u

l
′′′α , u

l
′′′β ), v is an ancestor of u. 

Otherwise, we further check whether l = k. If it is the 
case, we will check whether u’’’ is reachable from v’’’ 
in Gr. 

6. Experiment 
In this section, we report the test results. We conducted 
our experiments on a DELL desktop PC equipped with 
Pentium III 1.0 Ghz processor, 512 MB RAM and 
20GB hard disk. The programs are compiled using Mi-
crosoft virtual C++ compiler version 6.0, running stan-
dalone. 

6.1.On the Tested Methods 

In the experiments, we have tested eight methods: 
 Chain decomposition by Chen et al. (CD for short) 

[5], 
• Tree encoding by Agrawal et al.  (TE for short) [1], 
• 2-hop labeling by Cohn et al. (2-hop for short) [4], 
• Dual labeling by Wang et al. (Dual-II for short) 

[22], 

C2(b) = {i, c}. 
C4(r) = {e}. 

C4(h) = {e, i, j}, C3(h) = {g}, C0(h) = {k}. 
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V4: 

C5(a) = {b, r, h }, C4(a) = {e}. 

C3(e) = {f, g}. 

C2(f) = {d}. 
C2(g) = {d, c}. 

C0(d) = {k}. 
C1(c) = {p}. 

C0(p) = {k}. 

Figure 6. Graph Stratification 

C0(k) = { }. 
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• Matrix multiplication by Warren (MM for short) 
[25],  

• Tree-path by Jin et al. (TPath for short) [9], 
• GRAIL by Yildirim et al. [23] 
• Recursive DAG decomposition (discussed in this 

paper, RDD for short). 
The theoretical computational complexities of these 
methods are listed in Table 1 (in Section II). 
In the experiments, Jagadish’s chain decomposition is 
not included.  It is because Chen’s method works in a 
similar way, but has a much better labeling time. For 
the dual labeling, we implemented Dual-II, instead of 
Dual-I for tests. For non-sparse graphs, Dual-I needs 
even more space than any traditional matrix-based me-
thod; no compression in any sense. 
6.2.Conclusion 
In this paper, a new method is proposed to compress 
transitive closures to support reachability queries. The 
main idea behind it is to decompose G into a series of 
spanning trees: T0, …, Tk-1 (for some k ≥ 1), and a 
residue graph Gr, which enables us to associate two 
sequences with each node in G: an interval sequence 
and an anchor node sequence. Especially, in terms of 
the anchor sequences, a directed graph, called a transi-
tive core graph of G, can be constructed, which can be 
used to control the process of reachability checking. 
The method needs O(ke + ωr1.5nr) time to create a 
compressed transitive closure with O(kn + ωrnr) space 
requirement, and O(k) query time, where n is the num-
ber of the nodes in Gr, and ωr is the width of Gr, de-
fined to be the size of a largest node subset U of Gr 
such that for any pair of nodes u, v ∈ U there does not 
exist a path from u to v or from v to u. 
An extensive experiment is conducted to test different 
strategies over different kinds of graphs and real graphs, 
which shows that our method is promising. Our method 
is also a flexible strategy. For different applications, k 
can be set to different constants to reduce space over-
head. But the query time is still bounded by a constant. 
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