
HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

46

DAG Deduction and Decomposition: A New
Way to Evaluate Reachability Queries

Haihui HUANG, Xin WEN, Zheng LUO, Huixue QIAO
College of Software, CQUPT, Chongqing, China

Abstract: Let G(V, E) be a digraph (directed graph) with n nodes and e arcs. Digraph G* = (V, E*) is the re-
flexive, transitive closure if v → u ∈ E* iff there is a path from v to u in G. Efficient storage of G* is impor-
tant for supporting reachability queries which are not only common in graph databases, but also serve as fun-
damental operations used in many graph algorithms. A lot of strategies have been suggested based on the
graph labeling, by which each node is assigned with certain labels such that the reachability of any two nodes
through a path can be determined by their labels. Among them are interval labeling, chain decomposition, 2-
hop labeling, and path-trees. However, due to the very large size of many real world graphs, the computa-
tional cost and size of labels using existing methods would prove too expensive to be practical. In this paper,
we propose a new approach to deduct and decompose a graph into two graphs: a transitive core graph and a
residue graph. Both are much smaller than the original graph. In this way, we transform any reachability
query into two queries. One is over the transitive core graph and another is over the residue graph. While the
former can always be evaluated in constant time, the latter can be done by using any existing method, but over
a much smaller graph. We demonstrate both analytically and empirically the efficiency and effectiveness of
our method.
Keyword: Directed Graphs; spanning Trees; Reachability Queries; Transitive Closure Compression.

1. Introduction
Given two nodes u and v in a directed graph G(V, E),
we want to know if there is a path from u to v. The
problem is known as graph reachability. In many appli-
cations, such as evaluation of recursive queries in de-
ductive databases, type checking in object-oriented da-
tabases, XML query processing, social network, trans-
portation network, internet traffic analyzing, semantic
web, and metabolic network [22], graph reachability is
one of the most basic operations, and therefore needs to
be efficiently supported.
A naive method is to precompute the reachability be-
tween every pair of nodes – in other words, to compute
and store the transitive closure (TC for short) of a graph
as a boolean matrix M such that M[i, j] = 1 if there is a
path from i to j; otherwise, M[i, j] = 0. Then, a reacha-
bility query can be answered in constant time. However,
this requires O(n2) space, which makes it impractical for
massive graphs, where n = |V(G)|. Another method is to
compute the shortest path from u to v over a graph on
demand. Therefore, it needs only O(e) space, but with
high query processing cost - O(e) time in the worst case,
where e = |E(G)|.
There is much research on this issue to reduce space
overhead but still keep a constant query time, such as
those discussed in [1, 2, 4, 5, 6, 8, 9, 10, 22]. All of
them reduce the space requirement to some extent. But
the worst space overhead is still in the order of O(n2). In
the case of large graphs, they cannot be efficient.

In this paper, we investigate the problem from a differ-
ent angle: to deduct and decompose G into several
components such that the existing labeling techniques
can be utilized for each smaller graph without sacrific-
ing too much query time.
Concretely, we decompose G into two smaller graphs: a
transitive core graph Gcore and a residue graph Gr.
When a query q is submitted, we will first evaluate q
against Gcore, by which two paths of constant length in
Gcore will be searched. If the query can be answered in
this process, the task is done. Otherwise, a new query q’
is formed and evaluated against Gr. This can be con-
ducted by using any existing method. If we use the me-
thod discussed in [5], the whole query time of this me-
thod is bounded by O(κ), where κ is the length of a path
explored when evaluating q against Gcore, bounded by a
constant. Later we will see that |E(Gcore)| is bounded by
O(kn). So the total space overhead is bounded by O(κn
+ nrωr), where nr stands for the number of the nodes in
Gr, and ωr for the width of Gr, defined to be the size of
a largest node subset U of Gr such that for any pair of
nodes u, v ∈ U there is neither a path from u to v nor
from v to u.
More importantly, it is a very flexible method. For dif-
ferent applications, we can control the graph decompo-
sition, i.e., to set k to different constants, to get a trade-
off of query time for space. We will show that it is a
biased trade-off of time for space. While the query time
increases linearly, the space overhead decreases qua-

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

47

draticaly, in the sense that both the number of the nodes
and the width of Gr are decreased.
The remainder of the paper is organized as follows. In
Section II, we review the related work. In Section III,
we discuss the main step of our method to deduct and
decompose a directed acyclic graph (DAG), based on
which a transitive closure can be effectively compressed.
In Section IV, we address an interesting problem on
how to find spanning trees such that a graph can be de-
ducted in as few steps as possible. In Section V, we
show a recursive graph decomposition to generate a
series of spanning trees which may share common arcs,
from which the transitive core graph is established. Also,
how to evaluate reachability queries over such a graph
is discussed. In Section VI, we discuss the maintenance
of compressed transitive closures. Section VII is de-
voted to the experiments. Finally, a short conclusion is
set forth in Section VIII.

2. Related Work
In the past two decades, many interesting labeling-
based strategies have been proposed to reduce both the
precomputation time and storage cost with reasonable
answering time. In the following, we review some rep-
resentative ones.

2.1. Chain Decomposition Methods

In [8], Jagadish suggested a method to decompose a
DAG into node-disjoint chains. On a chain, if node v
appears above node u, there is a path from v to u in G.
Then, each node v is assigned an index (i, j), where i is
a chain number, on which v appears, and j indicates v’s
position on the chain. These indexes can be used to
check reachability efficiently with O(µn) space over-
head and O(1) query time, where µ is the number of
chains. However, to find a set of chains for a graph,
Jagadish’s algorithm first finds a minimized set of
node-disoint paths by solving a min flow problem, and
then stitches some paths together to form a chain. This
algorithm needs O(n3) time (see page 566 in [8]). In
addition, the number µ of the produced chains is nor-
mally much larger than the minimal number of chains.
In the worst case, µ is O(n).
The method discussed in [5] greatly improves Jaga-
dish’s method. It needs only O(n2 + ω1.5n) time to de-
compose a DAG into a minimum set of node-disjoint
chains, where ω represents G’s width. Its space over-
head is O(ωn) and its query time is bounded by a con-
stant. In [6], the concept of the so-called general span-
ning tree is introduced, in which each arc corresponds
to a path in G. Based on this data structure, the real
space requirement becomes smaller than O(ωn), but the
query time increases to logω.

2.2. Interval based Methods

In [1], Agrawal et al. proposed a method based on in-
terval labeling. This method first figures out a spanning
tree T and assign to each node v in T an interval (a, b),
where b is v’s postorder number (which reflects v’s rela-
tive position in a postorder traversal of T); and a is the
smallest postorder number among v and v’s descendants
with respect to T (i.e., all the nodes in T[v], the subtree
rooted at v). Another node u labeled (a’, b’) is a descen-
dant of v (with respect to T) iff a ≤ b’ < b. This idea
originates from Schubert et al. [1]. In a next step, each
node v in G will be assigned a sequence L(v) of inter-
vals such that another node u in G with interval (x, y) is
a descendant of v (with respect to G) iff there exists an
interval (a, b) in L(v) such that a ≤ y < b. The length of
such a sequence (associated with a node in G) is
bounded by O(λ), where λ is the number of the leaf
nodes in T. So the time and space complexities are
bounded by O(λe) and O(λn), respectively. The query-
ing time is bounded by O(logλ). In the worst case, λ =
O(n).
The method discussed in [22] can be considered as a
variant of the interval based method, and called Dual-I,
specifically designed for sparse graphs G(V, E). As with
Agrawal et al.’s, it first finds a spanning tree T, and
then assigns to each node v a dual label: [av, bv) and (xv,
yv, zv). In addition, a t × t matrix N (called a TLC matrix)
is maintained, where t is the number of non-tree arcs
(arcs not appearing in T). Another node u with [au, bu)
and (xu, yu, zu) is reachable from v iff au ∈ [av, bv), or
N(xv, zu) - N(yv, zu) > 0. The size of all labels is bounded
by O(n + t2) and can be produced in O(n + e + t3) time.
The query time is O(1). As a variant of Dual-I, one can
also store N as a tree (called a TLC search tree), which
can reduce the space overhead from a practical view-
point, but increases the query time to logt. This scheme
is referred to as Dual-II.

2.3. 2-hop Labeling

The method proposed by Cohen et al. [4] labels a graph
based on the so-called 2-hop covers. It is also designed
for sparse graphs. A hop is a pair (h, v), where h is a
path in G and v is one of the endpoints of h. A 2-hop
cover is a collection of hops H such that if there are
some paths from v to u, there must exist (h1, v) ∈ H and
(h2, u) ∈ H and one of the paths between v and u is the
concatenation h1h2. Using this method to label a graph,
the worst space overhead is in the order of O(n). The
main theoretical barrier of this method is that finding a
2-hop cover of minimum size is an NP-hard problem.
So a heuristic method is suggested in [4], by which each
node v is assigned two labels, Cin(v) and Cout(v), where
Cin(v) contains a set of nodes that can reach v, and Cout(v)
contains a set of nodes reachable from v. Then, a node u
is reachable from node v if Cin(v) ∩ Cout(v) ≠ Φ. Using
this method, the overall label size is increased to

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

48

O(n e logn). In addition, a reachability query takes
O(e) time because the average size of each label is
above O(e). The time for generating labels is O(n4).

2.4. Path-tree Decomposition

Recently, Jin et al. [9, 10] discussed a new method, by
which a DAG G is decomposed into a set of node-
disjoint paths. Then, a weighted directed graph Gw
(called path-graph in [9]) is constructed, in which each
node represents a path and there is an arc (i, j) if on path
i there is a node connected to a node on path j. The
weight associated with (i, j) is the number of such con-
nections. Then, find a maximum spanning tree Tw
(called path-tree) of Gw and label the nodes in Tw with
an interval in a way similar to Agrawal et al.’s. Togeth-
er with the labels assigned to the node on all the paths,
the intervals can be used to check part of reachability.
To be a complete strategy, each node v has to be asso-
ciated with a set, denoted Rc(v), such that all the des-
cendants of v, which appear on a path are dominated by
a node in Rc(v). In the worst case, the size of Rc(v) is
bounded by λ, the number of the leaf nodes of a span-
ning tree of G. Therefore, the space complexity of this
method is O(λn). The query time and the labeling time
are bounded by O(log2λ) and O(λe), respectively. Theo-
retically, both the space requirement and the query time
of this method is worse than Agrawal’s [1].

2.5. GRAIL

The method proposed by Yildirim et al. [23] is a light-
weight indexing structure. It traverses G for several
times to create an interval sequence for each node, used
as a filter as follows. Let Lu = 1

uL , …, k
uL and Lv

= 1
vL , …, k

vL be the interval sequences of u and v, re-

spectively. If there exists i (i ∈ {1, …, k}) such that i
uL

⊄ i
vL , u is definitely not a descendant of v. But if for

all i ∈ {1, …, k} i
uL ⊆ i

vL , it cannot be determined
whether u is a descendant of v, or vice versa. In this
case, the whole G will be searched in the depth-first
manner, but with the label sequences used to prune the
search space. The labeling time of this method is
bounded by O(k(n + e). If k is chosen as a constant, the
index size is proportional to O(n) and can be estab-
lished very fast. But in the worst case, the query time is
O(e) as if no index is established.
There are some other graph labeling methods, such as
the method using signatures [20], PE-Encoding [3] and
PQ-Encoding [24]. The idea of the signature-based me-
thod [20] is to assign to each node a signature (which is
in fact a bit string) generated using a set of hash func-
tions. The space complexity is O(ln), where l is the
length of a signature. But this encoding method suffers

from the so-called signature conflicts (two nodes are
assigned the same signature). Moreover, in the case of
DAGs, a graph needs to be decomposed into a series of
trees; and no formal decomposition was reported in that
paper. The PE-Encoding [3] and the PQ-Encoding [24]
are similar to the 2-hop labeling, but with higher com-
putational complexities. The methods discussed in [15,
16] reduces 2-hop’s labeling complexity from O(n4) to
O(n3), but are still not applicable to massive graphs. The
method proposed in [2] is a geometry-based algorithm
to find high-quality 2-hop covers. It also improves the
2-hop labeling by avoiding the computation of transi-
tive closures, which is required by Cohen’s to find 2-
hop covers. However, it has the same theoretical com-
putational complexities as Cohen’s method [4]. Finally,
the method discussed in [21] is suitable only for planar
graphs with O(nlogn) labeling time and O(nlogn) space.
The query time is O(1). Finally, the query evaluation
mechanism of deductive databases can be adapted to
handle this problem.
In the following table, we compare our labeling method
with the representative approaches.

Table 1. Comparison of Strategies

 Query time Labeling time Space over-
head

Graph traversal O(e) 0 O(e)
Jagadish [8] O(1) O(n3) O(µn)

Interval-based[1] O(logn) O(ne) O(λn)
Dual-I [22] O(1) O(n + e + t3) O(n + t2)
Dual-II [22] O(logt) O(n + e + t3) O(n + t2)

2-hop [4] O(e1/2) O(n4) O(nelogn)
Matrix-based[25] O(1) O(n3) O(n2)

Tree-path [9] O(log2λ) O(λe) O(λn)
GRAIL [23] O(e) O(ke) O(kn)

Chen [5] O(1) O(n2 + ω1.5n) O(ωn)

ours O(k) O(κe + ωr
1.5nr) O(κn + ωrnr)

Note that in the above table κ and k are two different
constants.
In the worst case, both µ and λ are in the order of O(n)
and t is in the order of O(e).

3.Graph Deduction
In this section, we discuss a new graph decomposition
approach to compress transitive closures. First, we give
some basic definitions related to spanning trees in Sub-
section A. Then, in Subsection B, we demonstrate our
basic graph decomposition based on the concept of crit-
ical nodes, as well as a method for checking the reacha-
bility by using such a graph decomposition. Finally, we
show how to efficiently recognize the critical nodes in a
graph in Subsection C.

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

49

3.1. Basic Definition

Without loss of generality, we assume that G is acyclic
(i.e., G is a DAG.) However, if G contains cycles, we
can find all the strongly connected components (SCCs)
of G by using Tarjan’s algorithm in O(e) time [18] and
collapse each of them into a representative node, and
transform G to a DAG [14]. Clearly, each node in an
SCC is equivalent to its representative node as far as
reachability is concerned.
We also use u → v to stand for an arc from u to v in a
directed graph (and (u, v) for an edge in an undirected
graph with u and v as endpoints.)
It is well known that the preorder traversal of G intro-
duces a spanning tree (forest) T. With respect to T, E(G)
can be classified into four groups:
• tree arcs (Etree): arcs appearing in T.
• cross arcs (Ecross): any arc u → v such that u and v

are not on the same path in T.
• forward arcs (Eforward): any arc u → v not appearing

in T, but there exists a path from u to v in T
• back arcs (Eback): any arc u → v not appearing in T,

but there exists a path from v to u in T.
All cross, forward, and back arcs are referred to as non-
tree arcs. (But in a DAG, we do not have back arcs
since a back arc implies a cycle.) For illustration, con-
sider the DAG shown in Figure 1. For it, we may find a
spanning tree as shown by the solid arrows in Figure 1.
(In the figure, each non-tree arc is represented by a
dashed arrow.)
As in [22], we can assign each node v in T an interval
[αv, βv), where αv is v’s preorder number (denoted
pre(v)) and β v - 1 is equal to the largest preorder num-
ber among all the nodes in T[v]. So another node u la-
beled [αu, β u) is a descendant of v (with respect to T) iff
αu ∈ [αv, βv) [22], as illustrated in Fig. 1. If αu ∈ [αv,
βv), we say, [αu, β u) is subsumed by [αv, βv). This me-
thod is called the tree labeling.

3.2. Graph Decomposition and Reachability Check-
ing

In this subsection, we discuss a kind of decomposition
of G(V, E): a spanning tree T and a subgraph Gc such
that |V(Gc)| < |V|. What we want is to transform the rea-
chability checking of any two nodes in G to a checking
over T and a checking over Gc. Obviously, Gc has to
contain Ecross. But some arcs from T need to be included

and carefully recognized. For this purpose, we intro-
duce some new concepts.
Denote by V’ the set of all the endpoints of the cross
arcs. We have V’ = Vstart ∪ Vend, where Vstart contains all
the start nodes while Vend all the end nodes of the cross
arcs. For example, for the graph shown in Figure 1, we
have Vstart = {h, g, f, d} and Vend = {e, g, c, d, k}. No
attention is paid to the forward arc (a, e) in the graph
since it can be simply removed without impacting the
checking of reachability.
The first concept is the so-called crossing range, which
is a second pair of integers associated with each node v
∈ V, defined below.
Definition 1 (crossing range) Let T be a spanning tree
(forest) of G. Let v be a node with the children v1, …, vj
in G. Let [αi, βi) (i = 1, …, j) be the interval of vi. Set av
= mini{αi} and bv = maxi{αi}. Then, {av, bv} is called
the crossing range of v. 
For technical convenience, for any node v without child
nodes in G, both its av and bv are set to be αv. For ex-
ample, with respect to the spanning tree shown in Fig-
ure 1, the crossing ranges of the nodes in G can easily
be computed, as shown in Figure 2.

Definition 2 (critical nodes) A node v in a spanning tree
T of G is critical if the following conditions are satis-
fied:
• There is a subset U of Vstart with |U| > 1 such that

for any two nodes u1, u2 ∈ U they are not related by
the ancestor/descendant relationship and v is the
lowest common ancestor of all the nodes in U.

• For each u ∈ U, its crossing range {au, bu} is not
within T[v]. That is, au or bu is a preorder number
not appearing in T[v]. 

All the critical nodes with respect to T are denoted by
Vcritical. For example, in the spanning tree shown in Fig.
1, node e is the lowest common ancestor of {f, g} and
both f and g are in Vstart. In addition, the crossing ranges
of f and g are not within T[e] (see Figure 2). So e is a
critical node. We also notice that node a is the lowest
common ancestor of {d, f, g, h}. But the crossing ranges
of all the four nodes are in T[a]. Thus, a is not a critical
node. In the same way, we can check all the other nodes
and find that Vcritical = {e}.
The reason for imposing second condition in the above
definition is that if any cross arc going out of a node in
T[v] reaches only a node in T[v], then the reachability

a

b

d

r
h

e

f

g

i

j

{1, 10}

{2, 5}

{2, 2}

{4, 4}

{4, 4}

 {5, 5} {2, 5}

{7, 7}

{4, 12}

{8, 9}
 {11, 11}

{12, 12}

c

k

p {4, 4}

Figure 2.Start Nodes, End Nodes, and Crossing Ranges

Figure 1.A Spanning Tree and Intervals

a

b

d

r
h

e

f

g

i

j

[0, 13)

[1, 5)

[2, 5)

[4, 5)

[5, 6)

 [8, 9)

[9, 10)

[6, 10)

[10, 13)

[7, 10)

 [11, 12)

[12, 13)

c

k

p [3, 5)

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

50

between v and any other node in G can be checked by
the tree labeling. So it is not necessary to include v in Gc
if v ∉ Vstart ∪ Vend.
Now we consider a tree (forest) structure Tc, called a
critical tree of G (with respect to T), which contains all
the nodes in Vcritical ∪ Vstart ∪ Vend. In Tc, there is an arc
from u to v if there is a path P from u to v in T and P
contains no other node in Vcritical ∪ Vstart ∪ Vend, as illu-
strated in Figure 3(a).
Denote Tc ∪ Ecross by Gc (see Figure 3(b).) Then, T and
Gc make up a decomposition of G. It can be seen that
V(Gc) is much smaller than V.

For any two node u, v appearing on a path in T, their
reachability can be checked using their associated inter-
vals. However, our question is, if they are not on the
same path in T, can we check their reachability by using
Gc?
To answer this question, we need another concept, the
so-called anchor nodes.
First, for any critical node v, we slightly change its
crossing range as follows.
• Assume that U is a subset of Vstart such that v is the

lowest common ancestor of all the nodes in it and
satisfies condition (1) and (2) in Definition 2.

• Set av ← min{minu∈U{au}, av};
 bv ← max{maxu∈U{bu}, bv}.
For instance, node e’s original crossing range is {8, 9}
(see Fig. 2). The crossing ranges of node f and g are {5,
5} and {2, 5}, respectively. So e’s original range will be
changed to {2, 9}.
Next, we denote by C(v) all the critical nodes in T[v]
plus all those start nodes of the cross arcs which appear
in T[v]. We consider a maximal subset of C(v) such that
each node in it does not have an ancestor in C(v). De-
note such a subset as Cs(v). It can be seen that in Cs(v)
there is at most one node u such that its crossing range
is not within T[v]. Otherwise, a new critical node in T[v]
will be created (see Definition 2), which is an ancestor
of u and in C(v), contradicting the fact that u ∈ Cs(v)
and thus has no ancestor in C(v).
Definition 3 (anchor nodes) Let G be a DAG and T a
spanning tree of G. Let v be a node in T. We associate
two nodes with v as below.
• A node y ∈ Cs(v) is called an anchor node (of the

first kind) of v if its crossing range is not within
T[v], denoted v*. If such a node does not exist, v*
is set to be the special symbol “-”.

• A node w is called an anchor node (of the second
kind) of v if it is the lowest ancestor of v (in
T),which has a cross incoming arc. w is denoted v**.
If such a node does not exist, v** is set to be “-”. 

For example, in the graph shown in Fig. 1, r* = e. It is
because node e is a critical node in Cs(r) and its cross-
ing range {2, 9} (note that the crossing range of a criti-
cal node is changed) is not within T[r]. But r** does not
exist since it does not have an ancestor which has a
cross incoming arc. In the same way, we find that e* =
e** = e. That is, both the first and second kinds of anc-
hor nodes of e are e itself. We can easily recognize the
anchor nodes for all the other nodes in that graph.

3.3. Recognizing Critical Nodes

From the discussion in the previous subsection, we
know that all the critical nodes need to be recognized to
construct Gc. Now we discuss an efficient algorithm for
this task.
We will search T bottom up and produce a subtree T’ of
T such that only the critical nodes and the nodes from
Vstart are included. Initially, T’ is set to ∅, and all the
nodes in Vstart are marked. Then, during the traversal of
T, any node belonging to Vstart or any critical node, once
it is recognized, will be inserted into T’. To this end,
each node v inserted into T’ will be associated with two
links, denoted parent(v) and left-sibling(v), respectively.
parent(v) is used to point to the parent of v in T’ while
left-sibling(v) points to a node in T’ created just before v,
which is not a descendant of v in T.
Concretely, parent(v) and left-sibling(v) will be created
as below.
• Let v be the node currently inserted into T’.
• If v is not the first node inserted into T’, we do the

following:
Let v’ be the node inserted just before v. If v’ is not a
child (descendant) of v, create a link from v to v’, called
a left-sibling link and denoted as left-sibling(v) = v’. If
v’ is a child (descendant) of v, we will first create a link
from v’ to v, called a parent link and denoted as par-
ent(v’) = v. Then, we will go along the left-sibling chain
starting from v’ until we meet a node v’’ which is not a
child (descendant) of v. For each encountered node u
except v’’, set parent(u) ← v. Finally, set left-sibling(v)
← v’’. 
Figure 4 is a pictorial illustration of this process.

In Figure 4(a), we show the navigation along a left-
sibling chain starting from v’ when we find that v’ is a
child (descendant) of v. This process stops whenever
we meet v’’, a node that is not a child (descendant) of v.
Figure 4(b) shows that the left-sibling link of v is set to
point to v’’, which is previously pointed to by the left-
sibling link of v’s left-most child.

d
h

e

f

g

(b)

d h

e

f

g

 (a)
Figure 3. Illustration for Tc

and G

c

k

c

k

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

51

Extending the above process with the recognition of
critical nodes and the computation of crossing ranges,
we get an efficient algorithm for finding all the critical
nodes.
Algorithm find-critical(T)
begin
1. T’ ← ∅. Mark any node in T, which belongs to Vstart.
2. Let v be the first marked node encountered during the bottom-

up searching of T. Insert v in T’.
3. Let u be the currently encountered node in T. Let u’ be the node

inserted into T’ just before u. Do (4) or (5), depending on
whether u is a marked node or not.

4. If u is marked, then insert u into T’ and do the following.
 (a) If u’ is not a child (descendant) of u, set left-sibling(u) = u’

(i.e., a link from u to u’).
 (b) If u’ is a child (descendant) of u, we will first set parent(u’)

= u. Then, we will go along a left-sibling chain starting
from u’ until we meet a node u’’ which is not a child (des-
cendant) of u. For each encountered node w except u’’, set
parent(w) ← u. Also, set left-sibling(u) ← u’’. (See Fig.
6(b) for illustration.) Calculate initial au and bu according to
Definition 1. Let W be the set of all the encountered nodes
during the navigation along the left-sibling chain (not in-
cluding u’’). Set au ← min{minw∈W{aw}, au} and bu ←
max{maxw∈W{bw}, bu}.

5. If u is a non-marked node, then do the following.
 (c) If u’ is not a child (descendant) of u, u is ignored.
 (d) If u’ is a child (descendant) of u, we will go along a left-

sibling chain starting from u’ until we meet a node u’’
which is not a child (descendant) of u. If there are more
than one node in W such that their crossing ranges not
within T[u], insert u into T’, and compute au and bu as (4.b).
Otherwise, u is ignored.

end
In the algorithm, each node v belonging to Vstart is simp-
ly inserted into T’, by which its {av, bv} is computed.
(See 4.a and 4.b. in the algorithm.) For a node not be-
longing to Vstart, we will check whether it satisfy the
conditions given in Definition 2. If it is the case, it will
be inserted into T’. At the same time, its crossing range
will be calculated. Otherwise, it will be ignored. (See
5.c and 5.d in the algorithm.)
Obviously, the algorithm requires only O(e) time since
each node in T is accessed at most two times and for
each node v out-degree(v) arcs will be visited.

4. Finding Optimal Spanning Trees
For a given DAG G(V, E) , we can find different span-
ning trees by exploring G in different ways. Especially,
for different spanning trees, the size of Gc can be differ-
ent. Clearly, what we want is to find such a spanning
tree that Gc is minimized. But, how to find such a span-
ning tree?

Let ℑ(G) be the family including all the spanning trees
of G. For T ∈ ℑ(G), denote by rT(v) the number of the
cross arcs coming to v with respect to T. We define

R(T) = ∑
∈Vv

T vr)(.

Intuitively, the smaller R(T) is, the smaller the size of
Gc. So our optimization problem is to find a T such that
R(T) is minimum. Unfortunately, there are exponential-
ly many spanning trees for a given DAG. So it is un-
likely to find an optimal one in polynomial time. In fact,
it is NP-complete.
In the following discussion, we will first prove the NP-
completeness of the problem. Then, we will present a
top-down algorithm to find a spanning tree of G with
fewer cross arcs than a traditional depth-first search.
Next, we will discuss a heuristic which can be inte-
grated into our top-down algorithm to mitigate the prob-
lem to some extent.

4.1. NP-completeness

First, we notice that
R(T) = e – n + 1 - ∑

∈Vv
T vf)(,

where fT(v) is the number of the forward arcs coming to
v with respect to T. Thus, minimizing R(T) is equivalent
to maximizing

F(T) = ∑
∈Vv

T vf)(.

Therefore, to show the NP-completeness of minimizing
R(T), we can show the NP-completeness of maximiz-
ing F(T).
Let P be a path in T. Let u, v be two nodes on P. We
call the forward arc from u to v an attached arc of P.
Obviously, to maximize F(T), we need to maximize the
number of the attached arcs of each path in T.
Now we consider a much easier problem to find a T
such that it has a path with the maximal number of at-
tached arcs, and show that even this problem is NP-
complete.
For this purpose, we define the following decision prob-
lem:
Input: A DAG G and a positive integer k ≤ n.
Question: Is there a spanning tree T such that it con-
tains a path P of length k with the number of the at-
tached arcs of P equal to (k – 1)(k – 2)/2.
We call this problem a maximum P-attachment problem.
Proposition 2: The maximum P-attachment is NP-
complete.
Proof: It is easy to see that the problem is in NP: An
algorithm can generate all spanning trees T of G and
check each T to see whether it has a maximum P-
attachment.
The completeness for NP is shown by a reduction from
the basic NP-complete problem SATISFIABILITY [7].
Let an instance of SATISFIABILITY be given by a

u’’ is not a
child of u. v

v’ …v’’

v

v’ …v’’

left-sibling(u’)

(a) (b)

Fig. 4: Illustration for the Construction of T’

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

52

collection of clauses C = {c1, …, ck}. Each ci is of the
form xi1 ∨ xi2 ∨ …,

iikx , where xij is a literal. We form a
DAG in two steps:
1. Generate an undirected graph G’, whose nodes are

pairs of integers [i, j], for 1 ≤ i ≤ k and 1 ≤ j ≤ ki. A
node [i, j] is connected to another node [k, l] if both
of the following hold:
• i ≠ j, and
• xij ≠ ¬xkl.

2. Explore G’ in the depth-first manner to change it to
a DAG G’’ as below:
• If an edge (u, v) in G’ is explored from u to v,

create an arc u → v in G’’.
• In G’’, reverse the direction of any back arc.

(Then, the resulting G’’ must be a DAG.)
Obviously, the DAG can be constructed in polynomial
time.
Now we claim that there is a satisfying truth assignment
for C if and only if there is spanning tree containing a
path P of length k such that the number of the attached
arcs of P equal to (k – 1)(k – 2)/2. It is because if C is
satisfiable, there must be a clique of size k. Exploring
the clique in the depth-first search and then reverse any
back arc, we will get a path of length k with the number
of the attached arcs equal to (k – 1)(k – 2)/2.

Next assume that T is a spanning tree of G’’, which
contains a path P of length k with the number of the
attached arcs equal to (k – 1)(k – 2)/2. Assigning a val-
ue to the variable in each literal x corresponding to a
node on P such that x is true while a value to the varia-
ble in any other literal y such that y is false, we get a
satisfying truth assignment for C for the following rea-
son. First, each node corresponds to a literal in a differ-
ent clause. Second, for each pair of literals represented
by two nodes on the path, they are not negation of each
other. 4.2. A Top-down Slgorithm

In this subsection, we give our top-down algorithm to
explore G, which is able to find a spanning tree with
more forward arcs than a traditional depth-first search.
The main idea behind the algorithm is to recognize a
kind of “triangles” as illustrated in Figure 5(a), during a
depth-first search.

Figure 5. Illustration for “Triangles” Encountered during

a DFS

In Figure 5(a), assume that node c is the current node
along a path from a to c, and b is one of c’s children,
but has been visited before (along the arc from a to b).
We can remove the tree arc a → b and make c → b a
tree arc. Then, a → b becomes a forward arc as illu-
strated in Figure 5(b).
In order to find such kind of transformations, we ar-
range a boolean array B such that B[i] = 1 indicates that
node i is on the current path during the depth-first
search. Otherwise, B[i] = 0. For simplicity, we assume
that G is a rooted graph. If it is not the case, a virtual
root is created and connected to all those nodes that
have no incoming arcs. Then, by the current path, we
mean the path from the root to the currently encoun-
tered node. Let v1 → v2 → … → vk be the current path.
And we are going to access one of vk’s children. At this
moment, in B all B[vj]’s must be set to 1 (j = 1, …, k)
while all the other entries are 0.
In the following algorithm, three special data structures
are used:
S – a stack to control the depth-first search;
C(v) – a list containing all the children of v in G.
c-list(v) – a list of all those children of v in G, which
have not yet been visited.
CT(v) – a list containing all the children of v in T.

Algorithm DFS-f(G)
begin
1. Each entry of B is set 0;
2. c-list(v) := C(v) for each v;
3. push(root, S); mark root ; B[root] := 1;
4. while (S ≠ φ) do {
5. v := top(S);
6. while c-list(v) ≠ φ do {
7. let u be the first node in c-list(v), chosen according
 to a heuristic if any;
8. if u is marked then {
9. let u’ be the parent of u in T;
10. if B[u’] = 1 then {
11. remove u from CT(u’); add u to CT(v);
12. }
13. remove u from c-list(v);
14. }
15. else { add u to CT(v);
16. push(u, S); mark u; B[u] := 1; v := u; }
17. }
18. w := pop(S); B[w] := 0;
19. }
end
In the above algorithm, the stack S is used to keep the
current path. Then, for each node w in S we have B[w] =
1. Let v be the node at the top of S (i.e., top(S) = v; see
line 5.) We will check the first element u in c-list(v)
(note that initially c-list(v) contains all the children of v;
see line 2.) Two cases need to be distinguished: u is
marked (showing that v has been visited before), or not
marked. If u is marked, we will check whether its parent
u’ (in the spanning tree T created up to now) is on the
current path by checking B[u’] (see lines 7 – 8.) If is the
case, a transformation will be conducted (see line 11.)

… …

a

b

c

… …

a

b

c

(a) (b)

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

53

Otherwise, u is simply removed from c-list(v) (see line
13.) If u is not marked, it will be added to T as one of
v’s children (see line 15.) Then, u is pushed into S and
marked (see line 16.) In a next step, one of u’s children
will be visited (see the assignment statement: v := u in
line 16). We repeat this process until we meet a node v’
with c-list(v’) = φ . In this case, the top element of S is
popped out and the corresponding entry in S is set to 0
(see line 18.)

4.3. Heuristics

Now we discuss a kind of heuristics, which enables us
to get a spanning tree with even more forwards arcs.
For this purpose, we arrange a preprocessor to stratify
the nodes of a graph into different levels to get some
information on the structure of the graph.
Let G(V, E) be a DAG. We decompose V into subsets
V0, V1,..., Vh such that V = V0 ∪ V1 ∪ ... ∪ Vh and
each node in Vi has its children appearing only in V0, ...,
Vi-1 (i = 0, ..., h - 1), where h is the height of G, i.e., the
length of the longest path in G. For each node v in Vi,
we say, its level is i, denoted l(v) = i. We also use Cj(v)
(j > i) to represent a set of links with each pointing to
one of v’s chidren, which appears in Vj. Therefore, for
each v in Vi, there exist i1, ..., ik (il < i, l = 1, ..., k) such
that the set of its children equals)(

1
vCi ∪ ... ∪

)(vC
ki . Such a DAG stratification can be done in O(e)

time, by using the following algorithm, in which we use
G1\G2 to stand for a graph obtained by deleting the arcs
of G2 from G1; and G1 ∪ G2 for a graph obtained by
adding the arcs of G1 and G2 together. In addition, d(v)
represents v’s out-degree.
Algorithm graph-stratification(G)
begin
1. V0 := all the nodes with no outgoing arcs;
2. for i = 0 to h - 1 do
3. {W := all the nodes that have at least one child in Vi;
4. for each node v in W do
5. {let v1, ..., vk be v’s children appearing in Vi;
6. Ci(v) := {v1, ..., vk};
7. if din(v) > k then remove v from W;};
8. G := G\{v → v1, ..., v → vk};
9. d(v) := d(v) - k;
10. Vi+1 := W;
11. }
end

In the above algorithm, we first determine V0, which
contains all those nodes having no outgoing arcs (see
line 1). In the subsequent computation, we determine
V1, ..., Vh. In order to determine Vi (i > 0), we will first
find all those nodes that have at least one child in Vi-1
(see line 3), which are stored in a temporary variable W.
For each node v in W, we will then check whether it
also has some children not appearing in Vi-1, which can
be done in a constant time as demonstrated below. Dur-
ing the process, the graph G is reduced step by step, and

so does d(v) for each v (see lines 8 and 9). First, we
notice that after the jth iteration of the out-most for-loop,
V0 ..., Vj are determined. Denote Gj(V, Ej) the
changed graph after the jth iteration of the out-most for-
loop. Then, any node v in Gj, except those in V0 ∪ ...
∪ Vj, does not have children appearing in V0 ∪ ... ∪
Vj-1. Denote dj(v) the out-degree of v in Gj. Thus, in or-
der to check whether v in Gi has some children not ap-
pearing in Vi-1, we need only to check whether di(v) is
strictly larger than k, the number of the child nodes of v
appearing in Vi-1 (see line 7).
During the process, each arc is accessed only once. So
the time complexity of the algorithm in bounded by
O(e).
As an example, consider the graph shown in Figure 1.
Applying the above algorithm to this graph, we will
generate a stratification of the nodes as shown in Figure
6.
In Figure 6, the nodes of the DAG shown in Fig. 1 are
divided into seven levels: V0 = {k}, V1 = {p}, V2 = {d,
c}, V3 = {f, g}, V4 = {e, f, i}, V5 = {b, r, h}, and V6 =
{a}. Associated with each node at each level is a set of
links pointing to its children at different levels below.
In terms of the graph stratification, we define a heuristic.
Let v be a node appearing at level i, with a set of links
pointing to its children:)(

1
vCi ...,)(vC

ki (il < i, l =

1, ..., k). We will associate it with a number σ(v), calcu-
lated as below:
σ(v) = (i - i1)|)(

1
vCi | + … + (i - ik)|)(vC

ki |,
in which a child node at a lower level receives a larger
weight since the possibility for a node to be incident to
a forward arc increases as its level decreases.
Then, our intention is to choose first the node with the
highest priority number at each step in a DFS-f search.
However, for the purpose of heuristics, we will use the
following number to take all the descendants of v into
account:

ϖ(v) = ()
()

∑
∈ vdescu

u
Vhd

σ
||

1
2 ,

where d is the largest out-degree of the nodes in G, and
desc(v) is a set containing all the descendants of v, in-
cluding v itself. Note that if we work bottom-up all
ϖ(v)’s can be produced in O(e) time.
This heuristic can be used in the DFS-f search in such a
way that each time we choose a child from c-list(v) the
node with the largest ϖ–value is selected. The tie is
resolved arbitrarily.
For example, if we use this heuristic to control a DFS-f
search of the graph shown in Fig. 1, we will create a
spanning tree as shown by the solid arcs in Figure 4.
The search starts at root a, and then go to h since ϖ(h)
is larger than both ϖ(r) and ϖ(b). From h we will go to
e (since ϖ(e) is larger than both ϖ(i) and ϖ(j)), and then

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

54

go to g (since ϖ(g) is larger than ϖ(f)). Repeating this
process, we will generate that spanning tree. However,
with respect to it we have only 5 cross arcs. But with
respect to the spanning tree shown in Fig. 1, we have 7
cross arcs. For this example, a set of 5 cross arcs is in
fact minimum since there are only 3 arcs, for which
there is a path of length ≥ 2 connecting their endpoints;
and altogether there are 8 non-tree arcs.

5. Recursive Graph Deduction
We note that Gc itself can be decomposed, leading to a
further space decrement. Repeating this operation, we
will get a recursive decomposition of G. In this subsec-
tion, we elaborate this process.
Let G0 be a DAG. Denote by T0 a spanning tree of G0.
Denote by 0

crossE the set of all the cross arcs with respect
to T0. Then, as discussed in Section III, T0 and G1 = 0

cT
∪ 0

crossE make up a decomposition of G0, where 0
cT is the

critical tree of G0. Recursively decomposing G1, we will
find a series of tree structures:

T0, T1, ..., Tk-1, (k ≥ 1),
such that T0 is a spanning tree of G0 and each Ti (i =
1, ..., k - 1) is a spanning tree of Gi = 1−i

cT ∪ 1−i
crossE ,

where 1−i
cT is the critical tree of Gi-1, and 1−i

crossE is a set of
all the cross arcs with respect to Ti-1. We refer to Gk as
the residue graph of G, denoted as Gr. It can be a graph
or a tree.
In this way, we are able to associate each node v in G0
with two sequences: an interval sequence and an anchor
node sequence to check reachability:

[v
0α , v

0β), ..., [v
jα , v

jβ),(j ≤ k - 1),
where each [v

iα , v
iβ) is an interval generated by labe-

ling Ti;
(vx0 , vy0), ..., (v

lx , v
ly),(l ≤ j),

where each v
ix is a pointer to an anchor node of the first

kind (a node appearing in Gi+1) while each v
iy a pointer

to an anchor node of the second kind (also, a node in

Gi+1). Each (v
ix , v

iy) can be generated as described in
Section III.
We notice that the anchor node sequences imply a
graph, in which there exists an arc u → v iff there is an
entry <x, y> in the anchor node sequence associated
with u such that x = v, or y = v. The arc is labeled with
{i, *} or {i, **} with i used to indicate that <x, y> is the
ith entry in the corresponding anchor node sequence. If
x = v, the arc is labeled with {i, *}. If y = v, the arc is
labeled with {i, **}. We refer to such a graph as a tran-
sitive core graph of G (or simply core graph of G) and
denote it by Gcore.
In order to check whether v is an ancestor of u, we will
search two paths in Gcore, starting from v and u, respec-
tively. The path starting from v, referred to as Pv, con-
tains only the arcs labeled with (i, *) while the path
starting from u, referred to as Pu, contains only the arcs
labeled with (i, **). Each time we reach two nodes v’
and u’ through two arcs labeled respectively with (i, *)
and (i, **), we will check whether [v

i
′α , v

i
′β) subsumes

[u
i

′α , u
i

′β). (Remember that each node in G0 = G is as-
sociated with an interval sequence [v

0α , v
0β), ..., [v

mα ,
v
mβ) for some m ≥ 0.) If it is the case, v is an ancestor of

u. Otherwise, we traverse along Pv and Pu, reaching v”
and u’’ through two arcs labeled respectively with (i + 1,
*) and (i + 1, **) and checking [v

i
′′

+1α , v
i

′′
+1β) against [u

i
′′

+1α ,
u
i

′′
+1β). We continue this process. After l steps for some l,

we will meet two nodes v’’’ and u’’’ such that v’’’ does
not have an out-going arc labeled with (l + 1, *) or u’’’
does not have an out-going arc labeled with (l + 1, **).
If [v

l
′′′α , v

l
′′′β) subsumes [u

l
′′′α , u

l
′′′β), v is an ancestor of u.

Otherwise, we further check whether l = k. If it is the
case, we will check whether u’’’ is reachable from v’’’
in Gr.

6. Experiment
In this section, we report the test results. We conducted
our experiments on a DELL desktop PC equipped with
Pentium III 1.0 Ghz processor, 512 MB RAM and
20GB hard disk. The programs are compiled using Mi-
crosoft virtual C++ compiler version 6.0, running stan-
dalone.

6.1.On the Tested Methods

In the experiments, we have tested eight methods:
 Chain decomposition by Chen et al. (CD for short)

[5],
• Tree encoding by Agrawal et al. (TE for short) [1],
• 2-hop labeling by Cohn et al. (2-hop for short) [4],
• Dual labeling by Wang et al. (Dual-II for short)

[22],

C2(b) = {i, c}.
C4(r) = {e}.

C4(h) = {e, i, j}, C3(h) = {g}, C0(h) = {k}.

V2:

V1:

V0:

V3:

a

b r h

e

i

j

f

g

d

c

p

k

V6:

V5:

V4:

C5(a) = {b, r, h }, C4(a) = {e}.

C3(e) = {f, g}.

C2(f) = {d}.
C2(g) = {d, c}.

C0(d) = {k}.
C1(c) = {p}.

C0(p) = {k}.

Figure 6. Graph Stratification

C0(k) = { }.

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

55

• Matrix multiplication by Warren (MM for short)
[25],

• Tree-path by Jin et al. (TPath for short) [9],
• GRAIL by Yildirim et al. [23]
• Recursive DAG decomposition (discussed in this

paper, RDD for short).
The theoretical computational complexities of these
methods are listed in Table 1 (in Section II).
In the experiments, Jagadish’s chain decomposition is
not included. It is because Chen’s method works in a
similar way, but has a much better labeling time. For
the dual labeling, we implemented Dual-II, instead of
Dual-I for tests. For non-sparse graphs, Dual-I needs
even more space than any traditional matrix-based me-
thod; no compression in any sense.
6.2.Conclusion
In this paper, a new method is proposed to compress
transitive closures to support reachability queries. The
main idea behind it is to decompose G into a series of
spanning trees: T0, …, Tk-1 (for some k ≥ 1), and a
residue graph Gr, which enables us to associate two
sequences with each node in G: an interval sequence
and an anchor node sequence. Especially, in terms of
the anchor sequences, a directed graph, called a transi-
tive core graph of G, can be constructed, which can be
used to control the process of reachability checking.
The method needs O(ke + ωr1.5nr) time to create a
compressed transitive closure with O(kn + ωrnr) space
requirement, and O(k) query time, where n is the num-
ber of the nodes in Gr, and ωr is the width of Gr, de-
fined to be the size of a largest node subset U of Gr
such that for any pair of nodes u, v ∈ U there does not
exist a path from u to v or from v to u.
An extensive experiment is conducted to test different
strategies over different kinds of graphs and real graphs,
which shows that our method is promising. Our method
is also a flexible strategy. For different applications, k
can be set to different constants to reduce space over-
head. But the query time is still bounded by a constant.

References
[1] Agrawal, A. Borgida and H.V. Jagadish, “Efficient

management of transitive relationships in large data and
knowlarc bases,” Proc. of the 1989 ACM SIGMOD Intl. Conf.
on Management of Data, Oregon, 1989, pp. 253-262.

[2] J. Cheng, J.X. Yu, X. Lin, H. Wang, and P.S. Yu, Fast
computation of reachability labeling for large graphs, in Proc.
EDBT, Munich, Germany, May 26-31, 2006.

[3] N.H. Cohen, “Type-extension tests can be performed in
constant time,” ACM Transactions on Programming Languages
and Systems, 13:626-629, 1991.

[4] E. Cohen, E. Halperin, H. Kaplan, and U. Zwick, Reachability
and distance queries via 2-hop labels, SIAM J. Comput, vol. 32,
No. 5, pp. 1338-1355, 2003.

[5] Y. Chen and Y.B. Chen, An Efficient Algorithm for Answering
Graph Reachability Queries, in Proc. 24th Int. Conf. on Data
Engineering (ICDE 2008), IEEE, April 2008, pp. 892-901.

[6] Y. Chen, General Spanning Trees and Reachability Query
Evaluation, in Proc: 2nd Canaidan Conference on Computer
Science and Software Engineering (C3S2E’09), ACM,
Montreal, Canada, May 19-21, 2009, pp. 243-252.

[7] M.R. Garey and D.S. Johnson, Computers and Intractability: A
Guide to the Theory of NP-Completeness, W.H. Freeman &
Co., 1990.

[8] H.V. Jagadish, “A Compression Technique to Materialize
Transitive Closure,” ACM Trans. Database Systems, Vol. 15,
No. 4, 1990, pp. 558 - 598.

[9] R. Jin, N. Ruan, Y. Xiang, and H. Wang, Path-Tree: An
Efficient Reachability Indexing Scheme for Large Directed
Graphs, ACM Transaction on Database Systems, Vol. No.1,
2011, pp. 1-52.

[10] R. Jin, Y. Xiang, N. Ruan, and H. Wang, “Efficiently
Answering Reachability Queries on Very Large Directed
Graphs,” Proc. of ACM SIGMOD Intl. Conf. on Management
of Data, Vancouver, Canada, 2008.

[11] D.E. Knuth, The Art of Computer Programming, Vol.1,
Addison-Wesley, Reading, 1969.

[12] H.A. Kuno and E.A. Rundensteiner, “Incremental Maintenance
of Materialized Object-Oriented Views in MultiView:
Strategies and Performance Evaluation,” IEEE Transactions on
Knowlarc and Data Engineering, vol. 10. No. 5, 1998, pp. 768-
792.

[13] W.C. Lee and D.L Lee, “Path Dictionary: A New Access
Method for Query Processing in Object-Oriented Databases,”
IEEE Transactions on Knowlarc and Data Engineering, vol. 10.
No. 3, 1998, pp. 371-388.

[14] I. Munro. Efficient determination of the transitive closure of
directed graphs. Information Processing Letters, vol. 1 (2), pp.
56-58, 1971.

[15] R. Schenkel, A. Theobald, and G. Weikum, HOPI: an efficient
connection index for complex XML document collections, in
Proc. EDBT, 2004.

[16] R. Schenkel, A. Theobald, and G. Weikum, Efficient creation
and incrementation maintenance of HOPI index for complex
xml document collection, in Proc. ICDE, 2006.

[17] M.A. Schubert and J. Taugher, “Determing type, part, colour,
and time relationship,” 16 (special issue on Knowlarc
Representation):53-60, Oct. 1983.

[18] R. Tarjan: Depth-first Search and Linear Graph Algorithms,
SIAM J. Compt. Vol. 1. No. 2. June 1972, pp. 146 -140.

[19] R. Tarjan: Finding Optimum Branching, Networks, 7. 1977, pp.
25 -35.

[20] J. Teuhola, "Path Signatures: A Way to Speed up Recursion in
Relational Databases," IEEE Trans. on Knowledge and Data
Engineering, Vol. 8, No. 3, June 1996, pp. 446 - 454.

[21] M. Thorup, “Compact Oracles for Reachability and Ap-
proximate Distances in Planar Digraphs,” JACM, 51, 6(Nov.
2004), 993-1024.

[22] H. Wang, H. He, J. Yang, P.S. Yu, and J. X. Yu, Dual Labeling:
Answering Graph Reachability Queries in Constant time, in
Proc. of Int. Conf. on Data Engineering, Atlanta, USA, April -8
2006.

[23] H. Yildirim, V. Chaoji, and M.J. Zaki, GRAIL: Scalable
Reachability Index for Large Graphs, in Proc. VLDB
Endowment, 3(1), 2010, pp. 276-284.

[24] Y. Zibin and J. Gil, "Efficient Subtyping Tests with PQ-
Encoding," Proc. of the 2001 ACM SIGPLAN Conf. on
Object-Oriented Programming Systems, Languages and
Application, Florida, October 14-18, 2001, pp. 96-107.

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 3, Issue 1, February 2014

56

[25] H.S. Warren, “A Modification of Warshall’s Algorithm for the
Transitive Closure of Binary Relations,” Commun. ACM 18, 4

(April 1975), 218 - 220.

Subscriptions and Individual Articles:

 User Hard copy:
Institutional: 800 (HKD/year)

