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Abstract: Classification for large datasets is a classical problem in machine learning. In this paper, we focus 
on effevtive classification algorithm for large datasets and imbalanced datasets. First, to deal with imbalanced 
dataset, we define the weight according to the size of positive and negative dataset. Then, a fast learning algo-
rithm on large datasets called a core set weighted support vector machines (CSWSVM) is proposed. In the 
proposed approach, the corresponding core set (CS) can be solved by employing the core vector machine 
(CVM) or generalized CVM (GCVM), and then the weighted support vector machines (WSVM) can be used 
to implement classification for imbalanced datasets. Experimental results on UCI and USPS datasets demon-
strate that the proposed method is effective. 
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1. Introduction 
Classification for large datasets is a hot issue in current 
research. It is difficult because many of kernel methods 
are formulated as quadratic programming (QP) problems 
[1-4]. The training time complexity of QP is O(N3) and its 
space complexity is at least quadratic. To reduce the 
time and space complexities, a variety of approaches 
have been proposed in large datasets problem. Typical 
techniques include the SMO algorithm [5, 6]; the sampling 
method for kernel methods [7]; matrix decompositions [8]; 
the core vector machine (CVM) [9, 10]. Tsang et al. pro-
posed the core vector machine (CVM) by utilizing an 
approximation algorithm for the minimum enclosing ball 
(MEB) problem in computational geometry, the CVM 
algorithm achieves an asymptotic time complexity that 
is linear in N and a space complexity that is independent 
of N, where N is the size of the training patterns; Hu et 
al. proposed the maximum vector-angular margin core 
vector machine[11], by connecting the CVM method with 
MAMC such that the corresponding fast training on 
large datasets can be effectively achieved; Chung et al. 
established the relationship between fuzzy inference 
systems and CC-MEB by GCVM [12]; Hu et al. proposed 
a fast learning algorithm for scaling up Minimum En-
closing Ball with total soft margin [13]. 
In the real world, these training samples are not always 
balanced. Many researchers have worked to solve this 
problem so that the classification performance of the 
majority class and that of minority class are good at the 
same time. To solve this problem, two methods have 
been proposed: one is based on sampling method and the 

other one is based on sample weighting method [14--16]. 
Sampling method includes: under sampling method and 
oversampling method. The sample weighting approach 
to the imbalanced data classification problem is to apply 
the weights to the training data points. 
In this paper, we focus on the large and imbalanced da-
tasets effective classification problem, a weight core 
vector machine - A core set weighted support vector 
machines (CSWSVM) approach is proposed. It consists 
of two stages. The first stage is to obtain the core set of 
the large training dataset by using the CVM algorithm. 
In the second stage, we define the weight on the the ob-
tained core set, the WSVM algorithm is utilized to train 
and yields a decision function for classifying testing 
patterns. Experiments on large classification datasets 
also demonstrated that the proposed method has compa-
rable performance with CVM implementations. 
The rest of this paper is organized as follows. Section 2 
presents the CSWSVM approach. In Section 3, the expe-
rimental results on several datasets are reported. Some 
conclusions are finally given in Section 4. 

2. A Core Set Weighted Support Vector 
Machines (CSWSVM)  

2.1. The Generalized Core Vector Machine 
(GCVM） 

In this section, we first review the generalized core vec-
tor machine (The generalized CVM, GCVM) algorithm 
as proposed in [10]. The GCVM utilizes an approxima-
tion algorithm for the center constrain minimum enclos-
ing ball (CC-MEB) problem, which will be briefly in-
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troduced in Section 2.1.1. 

2.1.1. Center Constrain Minimum Enclosing Ball (CC-
MEB)  

Suppose the training set is denoted by 
{ | , 1, , }n

i iS x x i N= ∈ = L , the minimum enclosing 
ball of S (denoted ( )MEB S ) is the smallest ball that 
contains all the points in S . In this paper, we denote the 
ball with center c  and radius R  by ( , )B Rc . Also, the 
center and radius of a ball ( , )B Rc  are denoted by Bc  
and Br , respectively. Given an 0ε > , a 
ball ( , (1 ) )B Rε+c  is an (1 )ε+ -approximation of 

( )MEB S  if ( )MEB SR r≤ and ( , (1 ) )S B Rε⊂ +c .  
: ( )i ix xϕ ϕ→ denotes the feature map associated with a 

given kernel k , and ( , )B Rc is the desired MEB in the 
kernel-induced feature space Γ . 
The MEB problem finds the smallest ball containing 
all ( )ix Sϕ ∈  in the feature space. In this section, we first 
augment an extra i Rδ ∈ to each ( )ixϕ  , forming 

( )i

i

xϕ
δ

 
 
 

. Then, we find the MEB for these augmented 

points, while at the same time constraining the last coor-
dinate of the ball’s center to be zero (i.e., of the form 

0
 
 
 

c
). The primal form of the center constrain minimum 

enclosing ball (CC-MEB) problem can be formulated as 
2

2 2 2

min

. . ( ) , 1, , .i i

R

s t x R i Nϕ δ− + ≤ =c L
              (1) 

The corresponding dual of (1) is the following QP prob-
lem 

max ( ( ) )
. . 1, .

T T

T

diag
s t

+ −

= ≥

α K Δ α Kα
α 1 α 0

                            (2) 

where [ ( , )] [ ( ) ( )]T
i j i jK k x x x xϕ ϕ= =  is the correspond-

ing kernel matrix, and 
2 2

1[ , , ] .T
Nδ δ= ≥Δ 0L                                              (3) 

From the optimal α solution of (2), we can recover 
R and c as 

( ( ) )T TR diag= + −α K Δ α Kα                             (4) 

1

( ).
N

i i
i

xα ϕ
=

= ∑c                                                         (5) 

The squared distance between the center 
0

 
 
 

c
and any 

point 
( )l

l

xϕ
δ

 
 
 

 

2 22 2( ) 2( ) .l l l ll lx kϕ δ δ− + = − + +c c Kα           (6) 

which does not depend explicitly on the feature map ϕ .  
Because of the constraint 1T =α 1 in (2), an arbitrary 
multiple of Tα 1 can be added to the objective without 
affecting its solution. In other words, for an arbitrary 
η ∈  , (2) yields the same optimal as 

max ( ( ) )
. . 1, .

T T

T

diag
s t

η+ − −

= ≥

α K Δ 1 α Kα
α 1 α 0

                   (7) 

Hence, any QP problem of the form (7), with the condi-
tion (3), can also be regarded as a special MEB problem, 
called center constrained MEB, i.e. CC-MEB. As 
pointed out by Tsang et al., CC-MEB can be approx-
imately solved with the asymptotic linear time com-
plexity O(N) and its space complexity independent of N 
for large datasets by using the generalized core vector 
machine. 

2.1.2. The GCVM Algorithm 

The GCVM algorithm is shown in Algorithm 1. Here, 
the core set, the ball’s center, and radius at the tth itera-
tion are denoted by ,t tS c , and tR respectively. The 
GCVM algorithm requires the input of a termination 
parameter ε . 
The core set can be obtained by using CC-CVM. 

Algorithm 1.  GCVM 
Step 1    Initialize ε , 0, ,t t tt S R= c ,  
Step 2   Update the core set: if there is no training pat-

tern that falls outside the ball ( , (1 ) )t tB Rε+c  in 
the corresponding feature space, tS S= . 

Step 3   Find z  such that it is the farthest away from tc  
in the corresponding feature space and set 

1 { }t tS S+ = zU  
Step 4    Find the new MEB: 1 1( , )t tB R+ +c  
Step 5    Set 1t t= + , and go to step 2. 
 

2.2. The Weighted Support Vector Machines (WSVM) 

2.2.1. Setting the Weight for Imbalanced Problem 
To deal with imbalanced dataset, we simply set the 
weight according to the size of positive and negative 
dataset. The data in the majority class have to receive 
lower weight than those in the minority class receives. 
When the size of positive set is Npos and that of negative 
set is Nneg, the weights are defined as 
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1/ 1,
1/

pos i
i

neg

N if y
s

N otherwise
== 

 .
                                     (8) 

To maintain the weight ratio and make the convergence 
speed faster, we also use the following weighting formu-
la  

1 1, ,
/ 1, ,
/ 1, ,

1 1, .

i pos neg

neg pos i pos neg
i

pos neg i pos neg

i pos neg

if y N N
N N if y N N

s
N N if y N N

if y N N

= ≥
 = <=  = − ≥
 = − <

 

 

 

           (9) 

2.2.2. WSVM 

We are given a training set 1{( , )}N
i i ix y = with 

{1, 1}iy ∈ − .The primal of the weighted SVM (WSVM) 
is defined as 

2

, , 1

1min
2

. . (( ) ) 1 , 1, , ,
0, 1, , .

N

i iw b i

i i i

i

w c s

s t y w x b i N
i N

ξ
ξ

ξ

ξ

=

+

⋅ + ≥ − = ⋅⋅ ⋅

≥ = ⋅⋅ ⋅

∑
             (10) 

By assigning the appropriate weight , 1, ,is i N= ⋅⋅ ⋅   to 
each data point, this outperforms the standard SVM with 
imbalanced training set. The lagrangian of formulations 
(10) is formulated as 

[ ]2

1 1

1

1 (( ) ) 1
2

N N

i i i i i i
i i

N

i i
i

L w c s y w x bξ α ξ

βξ

= =

−

= + − ⋅ + − +

−

∑ ∑

∑
           (11) 

Using the multiplier 0, 0, 1, , .i i i Nα β≥ ≥ = ⋅⋅⋅  Zeroing the 
derivative L of with respect to the primal variables 
yields 

1

1

0

0

0, 1, ,

N

i i i
i

N

i i
i

i i i
i

L w y x
w
L y
b
L cs i N

α

α

α β
ξ

=

=

 ∂
= − =∂

∂
= =

∂
 ∂

= − − = = ⋅⋅ ⋅
∂

∑

∑                       (12) 

By substituting the primal variables in (11) with the (12), 
we obtain the dual formulation of (10) as 

1 1 1

1min
2

. . 0 , 1, , .

N N N

i j i j i j i
i j i

i i

y y x x

s t cs i N

α
α α α

α
= = =

−

≤ ≤ = ⋅⋅ ⋅

∑∑ ∑                      (13) 

We have the following decision function 

1

( ) sgn( ( , )).
N

i i i
i

f x b y k x xα
=

= + ∑                          (14) 

 

2.3. The CSWSVM Algorithm 

We can now give a fast training algorithm for large data-
sets which is called the core set weighted support vector 
machines (CSWSVM). It consists of two stages. The 
first stage is to obtain the core set of the large training 
dataset by using CVM. In the second stage, we define 
the weight on the the obtained core set, WSVM algo-
rithm is utilized to train on the obtained core set and 
yields a decision function for classifying testing patterns. 
CSWSVM can be summarized as follows: 

Algorithm 2.  CSWSVM  

Stage 1:  Using CVM to obtain the core set. 
Step 1   Initialize ε , 0, ,t t tt S R= c ,  
Step 2   Update the core set: if there is no training pat-

tern that falls outside the ball ( , (1 ) )t tB Rε+c  in 
the corresponding feature space, tS S= . 

Step 3   Find z  such that it is the farthest away from 
tc ，set 1 { }t tS S+ = zU  

Step 4    Find the new MEB: 1 1( , )t tB R+ +c  
Step 5    Set 1t t= + , and go back to second step. 
Stage 2:  Using WSVM to train the core set tS . 

Step 6     Train the core set using the WSVM algorithm. 
Step 7     Yield the decision function according Eq. (14). 

3. Experimental Results 
In this section, we conduct the performance comparison 
of the three methods for real problems: Digit, DNA, 
Letter, Sat, Shuttle, Spambase, Usps, Skin_ Segmenta-
tion and MiniBooNE_PID. Most of the datasets are tak-
en from the UCI machine learning repository [17]. Usps is 
taken from database [18]. All the simulations are carried 
out in MATLAB7.1 environment running in Intel 
Core(TM) i5-2400, 3.10GHz, 8GBRAM. The descrip-
tion of datasets is shown in Table 1.  
The Gaussian function is taken as the kernel func-

tion
2

( , ) exp( / ).i j i jk x x x x h= − −  where h is the kernel 
parameter of the Gaussian kernel. The width parameter h 
is selected to the mean squared norm of the training data, 

2
2

, 1

(1/ )
N

i j
i j

h N x x
=

= −∑ . We select the approximation 

parameter ε =1e-3. In WSVM, the parameter C was 
selected from the grid {1, 10, 20, 50, 100, 500, 1000, 
10000}, and in GCVM, the parameter v was selected 
from the grid {1, 10, 20, 50, 70, 100}. The parameter 
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C 、 v are shown in Table 2. CSWSVM1 and 
CSWSVM2 are the proposed method with different 
weight in this paper. Considering the imbalanced nature 
of the training datasets, the geometric mean accuracy is 
adopted to evaluate the performance of our algorithms, 

g a a+ −= ⋅  

where  

_

# positive samples correctly classified 100%,
# total positive samples classified

# negative samples correctly classified 100%.
# total negative samples classified

a

a

+ = ×

= ×
 

This measure has been widely used in dealing with im-
balance datasets, and it takes into consideration the clas-
sification results on both positive and negative classes. 
Ten trials were conducted for the three algorithms and 
the average results are shown in Tables 3 and 4. Table 3 
shows the performance comparison of accuracy of the 
three methods in the real-world problems; testing accu-
racy and geometry accuracy of CSWSVM1 and 
CSWSVM2 is slightly higher than CVM method in most 
datasets.  
Table 4 shows the performance comparison of average 
training and testing time of the three methods in the real-
world problems. As observed from the Table 4, 
CSWSVM1 and CSWSVM2 methods compare to CVM 
method with almost same learning speed in most data-
sets. 

Tables 1.  Specification of the Datasets. 

Datasets # 
attributes 

# Training 
(# pos / neg) 

# Testing 
(# pos / neg) 

Digit 64 2810 
(288 /2522 ) 

2810 
(283 / 2527) 

DNA 180 3457 
(827 /2630 ) 

1729 
(404 / 1325) 

Letter 16 10000 
( 391/9609 ) 

10000 
( 398/9602 ) 

Sat 36 3217 
( 766/ 2451) 

3218 
( 767/ 2451) 

Shuttle 9 29000 
(22778 / 6222) 

29000 
(22808 / 6192) 

Spambase 57 2300 
(891 / 1409) 

2301 
(922 / 1379) 

Usps 256 6198 
( 1051/ 5147) 

3100 
( 502/ 2598) 

Skin_  
Segmentation 

3 147034 
(30810/116224) 

98023 
(20049/77974) 

MiniBooNE_ 
PID 

50 78038 
(21859/56179) 

52026 
(14640/37386) 

 

Tables 2.  Parameters in the Experiment. 

Datasets CVM        CSWSVM1      CSWSVM2 
C v 

Digit 10 2 
DNA 1 10 
Letter 20 50 

Sat 100 10 
Shuttle 50 70 

Spambase 10000 20 
Usps 1000 20 
Skin_ 

Segmentation 10 50 

MiniBooNE_ 
PID 100 10 

 
Tables 3.  Comparison of Accuracy of the Three Methods. 

Datasets CVM 
testing  

geometry  

CSWSVM1 
testing 

geometry  

CSWSVM2 
testing  

geometry  
Digit 96.4673 

98.5632 
97.7854 
99.0811 

99.2333 
99.4785 

DNA 88.4561 
86.8447 

94.5618 
90.5478 

97.3581 
96.8862 

Letter 93.4698 
90.1264 

97.7653 
96.7814 

99.6713 
99.0457 

Sat 955628 
97.7646 

96.6742 
96.6541 

97.8217 
97.74 

Shuttle 86.0467 
84.3741 

89.5619 
85.7534 

90.5481 
88.9176 

Spambase 77.8128 
72.237 

73.4671 
72.8129 

80.5681 
78.8641 

Usps 98.6291 
97.5113 

98.8294 
98.2242 

99.4327 
99.7701 

Skin_ 
Segmentation 

99.3901 
98.3175 

99.3711 
98.4081 

99.4188 
99.0118 

MiniBooNE_ 
PID 

73.0937 
73.3928 

73.3665 
72.225 

79.7522 
75.6618 

 

Tables 4.  Comparison of Training Time of the Three Me-
thods. 

Datasets CVM CSWSVM1 CSWSVM2 
Digit 4.4461 4.9655 5.0612 
DNA 54.4178 58.6559 56.8417 
Letter 3.0668 4.5671 4.9035 

Sat 3.3379 3.7449 4.1006 
Shuttle 1.276 1.9774 2.2109 

Spambase 0.2245 0.2312 0.3551 
Usps 9.3419 10.7732 9.8775 
Skin_ 

Segmentation 2.2318 3.4377 3.668 

MiniBooNE_ 
PID 1.8475 2.4603 2.4755 

4. Conclusions 
The CVM utilizes an approximation algorithm for the 
minimum enclosing ball (CC-MEB) problem. We pro-
posed the core set weighted support vector machines 
(CSWSVM) approach. It consists of two stages. In the 
first stage, the core set can be obtained efficiently by 
using the CVM algorithm. For the second stage, the 
weighted support vector machine (WSVM) can be used 
to implement classification. Experiments show that the 
proposed CSWSVM has comparable performance with 
CVM implementations.  
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