Efficient Domination in Cayley Graphs

Yunping Deng

Department of Mathematics, Shanghai University of Electric Power, Shanghai, 200090, China dyp612@hotmail.com

Abstract: An E-chain is a countable family of nested graphs, each of which has an efficient dominating set. In this paper, we construct two E-chains of circulant graphs, which are Cayley graphs on finite cyclic groups. In addition, we give a necessary and sufficient condition for the existence of efficient dominating sets in any Cayley graphs.

Keywords: Circulant graph; Cayley graph; Efficient dominating set

1. Introduction

For a simple graph Γ , we denote its vertex set and edge set respectively by $V(\Gamma)$ and $E(\Gamma)$. Let *G* be a finite group with *e* as the identity and *S* be a subset of *G* not containing *e* such that $S = S^{-1}$. The Cayley graph Cay(G,S) on *G* with respect to *S* is defined as the graph with vertex set V(Cay(G,S)) = G and edge set $E(Cay(G,S)) = \{\{g, sg\}: g \in G, s \in S\}$. Clearly, Cay(G,S) is a |S| – regular graph, and Cay(G,S) is connected if and only if *G* is generated by *S*. A Cayley graph on finite cyclic group $\mathbb{Z}_n := \{0, 1, \mathbf{L}, n-1\}$ with addition modulo *n* is called a circulant graph.

A subset I of vertices in a graph Γ is called an independent set if no two vertices in I are adjacent. A maximum independent set of Γ is an independent set of largest possible size, and this size, denoted by $a(\Gamma)$, is called the independence number of Γ . A subset *D* of vertices in a graph Γ is called a dominating set if each vertex not in D is adjacent to at least one vertex in D. The domination number of a graph Γ is the minimum size of a dominating set of Γ , and denoted by $g(\Gamma)$. A subset D of vertices in a graph Γ is called an efficient dominating set (also called a perfect code) if D is an independent set and each vertex not in D is adjacent to exactly one vertex in D. A countable family of graphs $\mathbf{F} = \{ \Gamma_1 \subset \Gamma_2 \subset \mathbf{L} \subset \Gamma_i \subset \Gamma_{i+1} \subset \mathbf{L} \}$ is called an E-chain if every Γ_i is an induced subgraph of Γ_{i+1} and each Γ_i admits an efficient dominating set.

In the past few years efficient dominating sets in Cayley graphs, especially in circulant graphs, have attracted received much attention. For example, Lee [1] proved that a Cayley graph on an abelian group admits an efficient dominating set if and only if it is a covering graph of a complete graph. Dejter and Serra [2] gave a constructing tool to produce infinite families of E-chains of Cayley graphs on symmetric groups. Huang and Xu [3] deter-

mined the existence of efficient dominating sets in several classes of circulant graphs. Tamizh Chelvam and Mutharasu [4] constructed an E-chain of circulant graphs. In addition, Tamizh Chelvam and Mutharasu [5] also gave a necessary and sufficient condition for a subgroup to be an efficient dominating set in circulant graphs. Kumar and MacGillivray [6] characterized the efficient dominating sets in circulant graphs with domination number 2 and 3, and Deng [7] further investigated the existence and construction of efficient dominating sets in circulant graphs with domination number prime. Obradović et al. [8] gave necessary and sufficient conditions for the existence of efficient dominating sets in connected circulant graphs of degree 3 and 4. Feng et al. [9] and Deng et al. [10] independently generalized the results in [8] by considering the case of more general degree.

In this paper, we construct two E-chains of circulant graphs, and give a necessary and sufficient condition for the existence of efficient dominating sets in any Cayley graphs.

2. E-chains in Circulant Graphs

2.1. Preliminary lemmas

Let *G* be a finite abelian group with additive notation. We define the sum of two subsets M,N of *G* by $M + N = \{m+n: m \in M, n \in N\}$. If each $x \in M + N$ has a unique representation in the form x = m+n with $m \in M$ and $n \in N$, then the sum M + N is called direct, and denoted by $M \oplus N$.

Lemma 2.1 [11] Let *G* be a finite abelian group and let M, N be subsets of *G*. Then $G = M \oplus N$ is equivalent to the conjunction of any two of the following conditions: (i) G = M + N;

(ii)
$$(M - M) \mathbf{I} (N - N) = \{0\};$$

(iii) $G \models M || N |$.

By the definitions of Cayley graph and efficient dominating set, one can obtain the following lemma.

HK.NCCP

Lemma 2.2 [7] Let *S* be a subset of a finite abelian group *G* not containing 0 such that S = -S, and let $S_0 = S \mathbf{U}\{0\}$. Then Cay(G,S) admits an efficient dominating set *D* if and only if $G = S_0 \oplus D$.

2.2. Constructing one E-chain

Lemma 2.3 Let n,m be positive integers and let M,Nbe subsets of \mathbf{Z}_n . If $\mathbf{Z}_n = M \oplus N$, then $\mathbf{Z}_{nm} = (M + n\mathbf{Z}_m) \oplus N$.

Proof. Since $\mathbf{Z}_n = M \oplus N$, it follows from Lemma 2.1 that $\mathbf{Z}_n = M + N$ and n = |M| |N|. Therefore, we have $(M + n\mathbf{Z}_m) + N = (M + N) + n\mathbf{Z}_m = \mathbf{Z}_n + n\mathbf{Z}_m = \mathbf{Z}_{nm}$, and $M + n\mathbf{Z}_m ||N| = (|M|m) |N| = (|M||N|)m = nm$, which together with Lemma 2.1 implies that $\mathbf{Z}_{nm} = (M + n\mathbf{Z}_m) \oplus N$. The assertion holds.

Theorem 2.4 Let Γ_i be the circulant graphs $Cay(\mathbf{Z}_{n_i n_2 \mathbf{L} n_i}, S_i)$ for $i = 1, 2, \mathbf{L}$ and D be an efficient dominating set of Γ_1 , where S_1 is a subset of $\mathbf{Z}_{n_1} \setminus \{0\}$ such that $S_1 = -S_1$, and $S_{i+1} = ((S_i \mathbf{U}\{0\}) + n_i \mathbf{Z}_{n_{i+1}}) \setminus \{0\}$ for $i = 1, 2, \mathbf{L}$. Then the family $\mathbf{F} = \{\Gamma_i : i = 1, 2, \mathbf{L}\}$ is an E-chain and D is an efficient dominating set of each $\Gamma_i \in \mathbf{F}$.

Proof. First it is easy to see that each Γ_i is an induced subgraph of Γ_{i+1} . Therefore, it is suffices to show that D is an efficient dominating set of each $\Gamma_i \in \mathbf{F}$.

Since *D* is an efficient dominating set of Γ_1 , it follows from Lemma 2.2 that $\mathbf{Z}_{n_1} = (S_1 \mathbf{U}\{0\}) \oplus D$. By Lemma 2.3, $\mathbf{Z}_{n_1 n_2} = ((S_1 \mathbf{U}\{0\}) + n_1 \mathbf{Z}_{n_2}) \oplus D = (S_2 \mathbf{U}\{0\}) \oplus D$, which together with Lemma 2.2 implies that *D* is an efficient dominating set of Γ_2 . Similarly, we can deduce by analogy that $\mathbf{Z}_{n_1 n_2 \mathbf{L} n_i} = (S_i \mathbf{U}\{0\}) \oplus D$ for

i = 1, 2, L, and thus D is an efficient dominating set of each $\Gamma_i \in \mathbf{F}$. The assertion holds.

2.3. Constructing another E-chain

Lemma 2.5 Let n,m be positive integers and let M,Nbe subsets of \mathbf{Z}_n . If $\mathbf{Z}_n = M \oplus N$, then $\mathbf{Z}_{nm} = (mM + \mathbf{Z}_m) \oplus mN$.

Proof. Since $\mathbf{Z}_n = M \oplus N$, it follows from Lemma 2.1 that $\mathbf{Z}_n = M + N$ and n = |M| |N|. Therefore, we have $(mM + \mathbf{Z}_m) + mN = m(M + N) + \mathbf{Z}_m = m\mathbf{Z}_n + \mathbf{Z}_m = \mathbf{Z}_{nm}$, and $|mM + \mathbf{Z}_m| |mN| = (|M||m) |N| = (|M||N|)m = nm$, which together with Lemma 2.1 implies that $\mathbf{Z}_{nm} = (mM + \mathbf{Z}_m) \oplus mN$. The assertion holds.

Theorem 2.6 Let Γ_i be the circulant graphs $Cay(\mathbf{Z}_{n_1n_2\mathbf{L}\,n_i}, S_i)$ for $i = 1, 2, \mathbf{L}$ and D be an efficient dominating set of Γ_1 , where S_1 is a subset of $\mathbf{Z}_{n_1} \setminus \{0\}$ such that $S_1 = -S_1$, and $S_{i+1} = (n_{i+1}(S_i \mathbf{U}\{0\}) + \mathbf{Z}_{n_{i+1}}) \setminus \{0\}$ for $i = 1, 2, \mathbf{L}$. Then the family $\mathbf{F} = \{\Gamma_i : i = 1, 2, \mathbf{L}\}$ is an E-chain and $n_i n_{i-1} \mathbf{L} n_2 D$ is an efficient dominating set of Γ_i for $i = 2, 3, \mathbf{L}$.

Proof. For $i = 1, 2, \mathbf{L}$, defining a mapping f_i as follows: $f_i : \mathbf{Z}_{n_i n_{\mathbf{L}} n_i} \rightarrow \mathbf{Z}_{n_i n_{\mathbf{L}} n_{i+1}}, g = n_{i+1}g$. Then it is easy to see that f_i is a one-to-one graph homomorphism from Γ_i to Γ_{i+1} , and thus Γ_i is an induced subgraph of Γ_{i+1} for $i = 1, 2, \mathbf{L}$. Therefore, it is suffices to show that $n_i n_{i-1} \mathbf{L} n_2 D$ is an efficient dominating set of Γ_i for $i = 2, 3, \mathbf{L}$.

Since *D* is an efficient dominating set of Γ_1 , it follows from Lemma 2.2 that $\mathbf{Z}_{n_1} = (S_1 \mathbf{U}\{0\}) \oplus D$. By Lemma 2.5, $\mathbf{Z}_{n_1n_2} = (n_2(S_1 \mathbf{U}\{0\}) + \mathbf{Z}_{n_2}) \oplus n_2 D = (S_2 \mathbf{U}\{0\}) \oplus n_2 D$, which together with Lemma 2.2 implies that $n_2 D$ is an efficient dominating set of Γ_2 . Similarly, we can deduce by analogy that $\mathbf{Z}_{n_1n_2\mathbf{L}n_i} = (S_i \mathbf{U}\{0\}) \oplus n_i n_{i-1}\mathbf{L} n_2 D$ for $i = 2, 3, \mathbf{L}$, and thus $n_i n_{i-1}\mathbf{L} n_2 D$ is an efficient dominating set of Γ_i for $i = 2, 3, \mathbf{L}$. The assertion holds.

3. Efficient Domination in Cayley Graphs

3.1. Preliminary lemmas

In this section, we assume that *G* is a finite group with multiplicative notation. The product of two subsets M, N of finite group *G* is defined as $MN = \{mn : m \in M, n \in N\}$. If each $x \in MN$ has a unique representation in the form x = mn with $m \in M$ and $n \in N$, then the product MN is called direct, and denoted by $M \times N$.

Similar to Lemmas 2.1 and 2.2, we have the following two lemmas.

Lemma 3.1 Let *G* be a finite group with identity element *e* and let M,N be subsets of *G*. Then $G = M \times N$ is equivalent to the conjunction of any two of the following conditions:

(i)
$$G = MN;$$

(ii)
$$M^{-1}M$$
 I $NN^{-1} = \{e\};$

(iii) |G| = |M| |N|.

Lemma 3.2 Let *S* be a subset of a finite group *G* not containing the identity *e* such that $S = S^{-1}$, and let $S_e = S \mathbf{U} \{e\}$. Then Cay(G,S) admits an efficient dominating set *D* if and only if $G = S_e \times D$.

3.2. Independence number and efficient domination

Theorem 3.3 Let S be a subset of a finite group G not containing the identity *e* such that $S = S^{-1}$, and let $S_e = S \mathbf{U} \{ e \}$. Then $a(Cay(G, S_e^{-1}S_e \bullet \{e\})) \le \frac{|G|}{|S|+1}$. Proof. We suppose on the contrary that $a(Cay(G, S_e^{-1}S_e \setminus \{e\})) > \frac{|G|}{|S|+1}$. Thus, there exist an independent set I of $Cay(G, S_e^{-1}S_e \setminus \{e\})$ such that $|I| > \frac{|G|}{|S|+1}$. By the definitions of independent set and Cayley graph, it is easy to see that $(S_e^{-1}S_e \bullet \{e\}) \mathbf{I} \ II^{-1} = \emptyset$, that is, $S_e^{-1}S_e \mathbf{I} \ II^{-1} = \{e\}$, which implies that the product of $S_e I$ is direct. Since the direct product $S_e \times I \subseteq G$, it follows that $|S_e|| I \leq G|$, and thus $|I| \leq \frac{|G|}{|S|+1}$, which contradicts with $|I| > \frac{|G|}{|S|+1}$. Hence the assertion holds.

Theorem 3.4 Let *S* be a subset of a finite group *G* not containing the identity *e* such that $S = S^{-1}$, and let $S_e = S \mathbf{U} \{e\}$. Then $g(Cay(G,S)) = \frac{|G|}{|S|+1}$ if and only if

 $a(Cay(G, S_e^{-1}S_e \bullet \{e\})) = \frac{|G|}{|S|+1}.$

Proof. If $g(Cay(G,S)) = \frac{|G|}{|S|+1}$, then there exists a dominating set D such that $|D| = \frac{|G|}{|S|+1}$. Note that Cay(G,S) is an |S| – regular graph. It is easy to see that D is an efficient dominating set of Cay(G,S). By Lemmas 3.1 and 3.2, $S_e^{-1}S_e \mathbf{I} DD^{-1} = \{e\}$, and thus $(S_e^{-1}S_e \setminus \{e\}) \mathbf{I} DD^{-1} = \emptyset$, which implies that D is an independent set of $Cay(G, S_e^{-1}S_e \setminus \{e\})$. Therefore, $a(Cay(G, S_e^{-1}S_e \bullet \{e\})) \ge \frac{|G|}{|S|+1}$, which together with Theorem 3.3 implies that $a(Cay(G, S_e^{-1}S_e \bullet \{e\})) = \frac{|G|}{|S|+1}$. If $a(Cay(G, S_e^{-1}S_e \bullet \{e\})) = \frac{|G|}{|S|+1}$, then there exist an in-

dependent set *I* of $Cay(G, S_e^{-1}S_e \bullet \{e\})$ such that $|I| = \frac{|G|}{|S|+1}$, which implies that $S_e^{-1}S_e \mathbf{I} II^{-1} = \{e\}$. By

Lemma 3.1, $G = S_e \times I$. By Lemma 3.2, *I* is an efficient dominating set of Cay(G,S), which implies that $g(Cay(G,S)) = \frac{|G|}{|S|+1}$. The assertion holds.

Lemma 3.5 [3] Let Γ be a *k*-regular graph of order *n* Then Γ admits an efficient dominating set if and only if $\sigma(\Gamma) = -\frac{n}{2}$

$$g(\Gamma) = \frac{n}{k+1}$$

Combining Theorem 3.4 and Lemma 3.5, one can easily obtain the following result.

Theorem 3.6 Let *S* be a subset of a finite group *G* not containing the identity *e* such that $S = S^{-1}$, and let $S_e = S \mathbf{U} \{e\}$. Then Cay(G,S) admits an efficient dominating set if and only if $a(Cay(G, S_e^{-1}S_e \bullet \{e\})) = \frac{|G|}{|S|+1}$.

Acknowledgment

This research is supported by National Natural Science Foundation of China (No. 11401368) and Introduction of Shanghai University of Electric Power Scientific Research Grants Project (No. K2013-006).

References

- J. Lee, Independent perfect domination sets in Cayley graphs, J. Graph Theory 37 (2001) 213-219.
- [2] I. J. Dejter and O. Serra, Efficient dominating sets in Cayley graphs, Discrete Applied Math. 129(2003) 319-328.
- [3] J. Huang and J. M. Xu, The bondage numbers and efficient dominations of vertex-transitive graphs, Discrete Math. 308 (2008) 571-582.
- [4] T. Tamizh Chelvam and S. Mutharasu, Efficient open domination in Cayley graphs, Appl. Math. Lett. 25 (2012) 1560-1564.
- [5] T. Tamizh Chelvam and S. Mutharasu, Subgroups as efficient dominating sets in Cayley graphs, Discrete Appl. Math. 161 (2013)1187-1190.
- [6] K. R. Kumar and G. MacGillivray, Efficient domination in circulant graphs, Discrete Math. 313 (2013) 767-771.
- [7] Y. P. Deng, Efficient dominating sets in circulant graphs with domination number prime, Inform. Process. Lett. 114 (2014) 700-702.
- [8] N. Obradović, J. Peters and G.-Ružić, Efficient domination in circulant graph with two chord lengths, Inform. Process. Lett. 102 (2007) 253-258.
- [9] R. Q. Feng, H. Huang and S. M. Zhou, Perfect codes in circulant graphs, Discrete Math. 340 (2017) 1522-1527.
- [10] Y. P. Deng, Y. Q. Sun, Q. Liu and H. C. Wang, Efficient dominating sets in circulant graphs, Discrete Math. 340 (2017) 1503-1507
- [11] D. T. Vuza, Supplementary Sets and Regular Complementary Unending Canons (Part One), Perspectives of New Music 29 (1991)22-49.