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Abstract: This paper combines geometric flow method with tessellation and make full use of their respective 

strengths to complete some surface design problems, such as surface blending, N sides fill holes and others 

which satisfy G1 boundary conditions. Based on full analysis of subdivision, the technology utilizes the dis-

crete of four-order geometric flows to successfully construct four-order geometric partial differential equa-

tions’ finite element method based on quadrilateral surface subdivision. Experimental results show that: sur-

face design which based on geometric flow method and surface subdivision is effective and correct. 
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1. Introduction 

In surface design, Bloor and others first proposed surface 

construction method based on partial differential equa-

tions. After that the method which based on PDE devel-

ops rapidly and it is widely used in computer-aided sur-

face design. Later, it is proposed to use the geometric 

PDE method to construct surfaces. For example, the 

mean curvature flow is a second-order geometric PDE, 

which has good smoothness and noise canceling features, 

has been successfully applied in the design of the smooth 

surface, curved stitching and free surface design and oth-

er issues. In recent years, surface design method based on 

fourth-order geometric PDE has became a hot topic in 

the field, for it can generate G1 continuous stitching sur-

face. All the above methods are represented with the dis-

crete grid method of surface. As the B-spline, NURBS 

emerge and develop, the spline surface representation is 

gradually introduced into the surface design. Earlier, 

Bloor and others applied B-spline as the solution of bi-

harmonic equation.Later, Terzopoulos etc., put forward a 

dynamic NURBS method, using a second-order differen-

tial equation to determine the evolution of DNURBS [1-

3]. But the equation is not intrinsic geometry and can not 

get NURBS’ G1 smooth stitching.  

Surface design has been formed a theoretical system 

which takes NURBS parametric feature technology and 

implicit algebraic surfaces as the main body, takes inter-

polations, fitting, approaching as the skeleton. As com-

puter graphics requirements for the authenticity of ob-

jects increase, the object's geometric design complexity 

increases and research areas the expands, using only pa-

rametric polynomial has been far from able to satisfy 

demand, it is urgent to call for new ways to solve new 

problems that appear in various research areas. So seg-

mentation techniques, partial differential equations me-

thods have been widely applied to these emerging field 

of study [4]. 

As we all know, three-dimensional data sampling tech-

niques and hardware devices rapidly develop, such as 

laser range scanning, object’s initial mesh can be easily 

generated on the computer; more importantly, because 

the graphics industry’s demand for smooth surface mod-

eling of arbitrary topology is increasingly urgent, the 

traditional Bézier, B-spline methods can not meet the 

requirements any more, they have serious limitations in 

design of arbitrary shaped boundaries and surfaces of 

arbitrary topology, while tessellation is able to provide a 

simple and efficient algorithm to characterize arbitrary 

topology free-form surfaces, and has a certain order of 

smoothness. In 1974, Chaikin first proposed the concept 

of discrete segments [4]. In 1978, Doo Catmull etc., put 

forward subdivision rules of biquadratic and Bi-cubic 

tensor product B-spline surfaces based on quadrilateral 

meshes [5-7]. 

2. Thought of Subdivision 

Subdivision method is a discrete modeling approach 

gradually developed since the late 1974s and was consi-

dered geometric modeling industry as one of the key 

technologies for the next generation of geometric model-

ing. The basic idea generated from the free surface mod-

eling technology in the early 1970s. As shown in Figure 

1, control polygon of cubic .B zier  curve is 

 0 1 2 3, , ,q q q q  .Mapping method or the de Casteljau 

algorithm can obtain a point  ' ' '

3 3 0q q q on the curve 

Bzier. '

3q divides the curve into two child cubic .B zier  

curves which take 
0 1 2 3

' ' ' ', , ,q q q q      and 

 0 1 2 3, , ,q q q q  as the control polygon .Obviously, the 
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broken line combined by the control polygon 
1  and 

2  

is more approximate to .B zier  curve than  . If repeat 

the segmentation process on curves of 
1  and 

2  , bro-

ken line which is more approximate to .B zier  curve can 

be got. If the iterative process continues, the resulting 

line will rapidly converge .B zier  curve. 

q1
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Figure 1. One time subdivision of the cubic B zier curve 

Segmentation model discussed in this article is the popu-

larization of the above subdivision thought in the space 

triangular control grid, first proposed by Loop of Utah 

University in the United States, the resulted surface is 

promotion of the box-spline surfaces. 

For non-triangular meshes (like quadrilateral mesh), tri-

angulation is required before subdivision. On a triangle 

conduct one Loop subdivision can generate four sub-

triangles (as Figure 2), the vertexes of the triangle can be 

divided into sub-parent triangular top bit (vertex-point) 

and edge points (edge-point). The former is subdivided 

from the parent triangle vertexes before changing, 

as
0 1 2

' ' '[ , , ]q q q in Figure 2; the latter is new vertex generat-

ed from triangle edge of the parent by the segmentation 

process, such as 1 2 3, ,q q q . Vertex-point and edge points 

are generated by the parent triangle vertexes and directly 

adjacent vertexes in the grid by using vertex template and 

edge template by affine combinations. 
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Figure 2. Triangle 1- 4 schematic subdivision 

As shown in Figure 3, for vertexes ( )

0

lq with degree on l (l 

= 0,1,2, ...) subdivision level , supposed that directly ad-

jacent vertexes in the mesh is ( )

0

lq , ( )

1

lq , ( )

2

lq , ( )l

nq , then new 

location ( 1)

0

lq  of the vertex ( )

0

lq  on l n  level and direct-

ly adjacent vertexes  ( 1) 1,...,l

iq i n  can be obtained by 

using the following vertex-point / side point rules.  

 

0

2

( ) / ( )

5
( ) 3 2cos(2 / ) /128

8

w n n a n n

a n n

 

  
          (1) 

Use the above rules to conduct subdivision iteration on 

triangular mesh and control grid, then a smooth limit 

surface will be converged. Each vertex v of initial control 

mesh can find a corresponding point v  on the limit 

surface . .M uller etc,. put forward the formula to strike 

v  and its two non-collinear cut vectors u1 and 
2u  on 

limit surface, then normal direction of surface at v  

point can be obtained . 
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'

'
'

v0

 

Figure 2. Generation of triangular mesh point and its 

adjacent vertexes on l+1 subdivision hierarchy 

Boundary treatment, edit and modification of curves are 

as follows: 

Conduct respectively once and twice subdivision o the 

initial grid. It is not difficult to find that the subdivided 

grid is also dense in where the initial control triangle 

network is dense; relatively straight edges of control 

network on plowshare site become jagged after subdivi-

sion ; The outer edge of the wing plow and the edge of 

plows chest are not smooth, which are not expected. Its 

main causes are that subdivision rules are used for ver-

tex-point and edge point on the border of the grid and 

inside the grid during subdivision. 

In order to eliminate the affect of subdivision process on 

the geometric properties of control mesh boundary, it is 

necessary to modify the generation rules for the vertex 

point and edge point of boundaries. 

It is needed to respectively treat borders that maintain 

smooth and straight, mark respectively the initial mesh 

vertexes .For the former, the boundary vertex point just 

needs to remain unchanged, and the boundary edge point 

only needs to do linear interpolation on the end points of 

the edge; The latter, in order to make the surface smooth 

at the boundary point, it needs to modify the weight of 

the vertex point and edge point template which take the 

boundary points as end points and the inner side edge 
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point template, the modified rules are shown in Figure 

4.Among which, 

1 21/ 4    1/ 2k k   

k2

k1

1/8 1/8

1/21/2

1/81/8 3/4

(a)

(c)
(b)

 

Figure 3. Templates of vertex points and edge points in 

modified grid boundary vertex 

More generally, the boundary control method is to intro-

duce a normal into the grid. Normal control can achieve 

an arbitrary boundary surface control by changing the 

size of the right of boundary points’ subdivision rule, and 

through the subdivision process control mesh can be gen-

erated from the original breakdown of the various resolu-

tion mesh model. These grid models can be used as input 

of finite element calculation or dynamic simulation soft-

ware, through the establishment of soil plow surface 

movement along mattress mechanical model. By con-

ducting finite element calculation or simulation on the 

plow surface under different tillage speeds, tillage depth, 

soil deformation and soil condition mattress and other 

conditions of work performance and efficiency, the basis 

for the design of complex plow surface can be provided. 

3. Equation Model and its Weak Form 

Equation models of surface diffusion flow, Willmore 

flow and surface diffusion flow are listed below. Let S  

be a closed orientable surface of 3R , it is needed to find a 

family of smooth and orientable surface set   : 0s t t  , 

which meet below conditions: 
2( ):= SW S R d                             (2) 

Proposed surface diffusion flow 

2

0,  (0)

( )

s

x
x S S

t

S t


  


  

                       (3) 

This paper adopts mixed finite element method to solve 

these three four order geometric flows, control vertexes 

on the surface are the unknown quantity need to be de-

termined , the average surface curvature and mean curva-

ture vector are also treated as unknown quantities. Spe-

cific steps are as follows: First, the fourth-order equations 

are written in two second-order equations coupled system; 

Then create this coupled system variational form(weak 

form), then conduct the discretization of finite element , 

exporting a linear system; finally use iterative method to 

solve the linear system to obtain approximate solutions. 

The following are their weak forms, let the trial function

φ , ( )IR S  ,then formula (9) (10) weak forms as 

follows: find ( )IR S  ,which makes 

2 [ ( ) ] 0,

( )

1
( ) 0, ( )

2

T

s s s s

I

I

s

x
dA R n R dA

t

R S

sR dA tr x dA R S

  



  


      


 

     


 

 

        (4) 

And 

2

[ ( ) ]

2 ( ) 0, ( )

1
( ) 0, ( )

2

T

s s s s

I

s

I

s s

x
dA R n R dA

t

n R K RdA R S

R dA tr x dA R S

  

 

  


      


   


     


 



 

       (5) 

Weak form of formula (11) is as: find ( )IR S  , 

which makes 

2 0, ( )

1
( ) 0, ( )

2

I

s s

T I

s s

x
dA sR s dA R S

t

R dA sx s dA R S

  

  


      


      


 

 

   (6) 

4. Discrete of Four Order Geometric Flows 

Equation’s finite element discretization will be described 

as below. First, introduce two finite element space 

 1 2, ,...r nE span    and  1 2, ,...r nF span    . In 

rE  and rF , carry out spatial discrete for the control ver-

tex x, mean curvature H and mean curvature normal R . 

Let T  be a quadrilateral control mesh of surface s , its 

control vertex is denoted as  
1

n

j i
x


. Classification of the 

control vertexes is provided in the following. The first 

category are interior vertexes , whose location are un-

known and they are the amount to be solved in this paper , 

denoted as   0

1

n

j i
x


.For curved stitching or N-sided hole 

filling problem, it requires internal vertexes in stitching 

or patching area. The rest of the control vertexes are de-

noted as  
0 1

n

j i n
x

 
, they are known quantity. Continue to 

carry on classification. Denote vertex which is adjacent 

to internal vertex   0

1

n

j i
x


 as   2

2 1

n

j i n
x

 
 within two circles. 

Then the remaining vertexes are denoted as   0

2 1

n

j i n
x

 
, 

the mean curvature of these vertexes is known. So un-

knowns need to be solved is the position   0

1

n

j i
x


of the 
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control vertex, mean curvature   2

1

n

i i
R


and mean curva-

ture vector   2

1

n

i i
R


 can be written as 

Wherein ( )jR t  and ( )R t  respectively represents the 

mean curvature and the mean curvature vector at the ver-

tex 
jx . In this paper, basis functions 

j  and 
j of each 

vertex 
jx are all limit function form of Catmull-Clark 

subdivision format, the value at the control point 
jx  is 1, 

the value is 0 at the other points. Branched groups of 

j and
j  are local, including the vertexes within 2 cir-

cles around control point 
jx . In actual calculation, the 

parameter value is taken as a unit within the quadrilateral 

Gauss nodes. If vertexｘｊis non-rule-based, partial sub-

division can be carried out in its vicinity until Gauss 

point parameter values fall into a regular bi-cubic B-

spline surface chip. 

Put the discretization form formula (7) (8) of control ver-

tex x and mean curvature H in the finite element space 

into equation (4) (5), taking the trial function   0

1

n

i i
  and 

  2

1

n

i i
 , by the known condition it can be known 

that   / 0j tx t   (when
0j n , 

jx is fixed). Then put 

the items which are relative to the known control vertex 

 
0 1

n

i i n
x

 
and the mean curvature  

2 1

n

i i n
R

 
to the right 

side of equation, then get matrix form of formula (4) (5) 

as the following  

0

0 2 2

2 2 0 0

(1) (1) (1)

(2) (2) (2)

( )
( )

( ) ( )

n

n n n

n n n n

X t
M L Y t B

t

M Y t L X t B


 


  

 (7) 

The elements of which are defined as follows: 
(1) (2)

3

(1)

2

(2)

[ ] , ;

2 [ ( ) ] ,  SDF

[ [ 2 ( ) ] ( ) ] ,  for WF

1
[ ( ) ( ) ]

2

ij s i j ij s i j

T

s i j j j

ij
T

s i j j i j

T T T

ij s i j i j

m dA I m dA

n s s dA for
l

n H K n s s dA

l s s n dA

  

   

    

   

 

    
 

     

     

 






 (8) 

The dimension of the right hand side are 

  3 01C R n ,   22C Rn . 

Similarly, put equation (15) (16) into equation (8), simi-

larly, matrix form of formula (18) is as 
(3) (4)

(3)

(4)

, ;

2 ( ) ,

1
( ) .

2

ij S i j ij S i j

T

ij S j i

T

ij S j i

m dA m dA

l s s dA

l s s dA

  

 

 

 

   

  

 





 (9) 

The dimension of the right hand side are 

  03 3C Rn  ，   24 3C Rn  . 

In the following conduct time discretization. For formula 

(18), assuming there areapproximate solution 
   

0 0

k

n n kx x t and
   

2 2

k

n n kx x t  when time
kt t . Semi-

implicit Euler scheme can be used to construct the ap-

proximate solution 
   

0 0

1
1

k

n n kx x t

  and 

   
2 2

1
1

k

n n kx x t

  when  1k kt t t k   , namely use 

( )
1[ ( ) ( )] /o o

k
n k n kx t x t   to replace the derivative 

( ) /onX t t  , surface data when 
kt t  is used to calculate 

matrix  1M ,  2M ，  1L  and  2L of formula (19) . 

Then result in a linear system for solving 
 

0

1k

nx


and 
 

2

1k

nx


. 

0 2 0 0 0

0 2 2

(1) ( ) (1) ( 1) ( ) (1) (1) ( )

(2) (2) ( 1) (2)

     

                                 

k k k k
n n n n n

k

n n n

M L X B M X

L M Y B

 




     
      
        

 (10) 

 

Noted that although  1M and  2M of the coefficient 

matrix is symmetric positive definite, but the overall 

coefficient matrix is not symmetric positive definite. In 

this paper, the GMRES iterative method proposed by s

ａ
da  is used to solve the system. 

5. Simulation and Analysis 

This section presents several numerical examples to illu-

strate QSDF, SDF and WF’S different surface evolution 

effects, and how to use them to solve some problems of 

surface design. 

5.1. Effects of SDF, ASDF and WF 

All four order equations have surfaces polished or de-

noising function, as can be seen from Figure 5, three 

short-term four order stream’s evolution effect is similar, 

but the long-term evolution effect is significantly differ-

ent. 

 
Figure 5. Effect comparison of SDF, QSDF and WF 

In Figure 5, from left to right the first is an input surface 

mesh, the second and third one are respectively the re-

sults after twice and four times evolutions through QSDF. 

The fourth and the fifth one are the results are respective-

ly the results after four times and seven times evolutions 

through QSDF and time step length is taken as 0.00005. 
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As can be seen, since SDF has a volume-preserving na-

ture, it can remain initial surface shape better than QSDF 

and WF, so SDF is more suitable for solving the problem 

of smooth surface. In addition, QSDF can rapidly shrink 

surface, while WF expands the surface. Therefore, ac-

cording to the actual need to select the appropriate geo-

metric flow, the three streams’ different evolutionary 

effects can also be reflected in the splicing problems. 

5.2. Blending surfaces 

Given a set of boundary surface mesh, it needs to con-

struct a smooth transition surface to stitch together the 

given surface and has 
1G  continuity at the stitching 

boundary. In Figure 6, the surfaces to be spliced are cy-

linders of three mutually perpendicular surfaces , as 

shown in Figure 6a, Figure 6b shows an initial mosaic 

surface with smooth 
0G , Figure 5c shows the result of 

the evolution through QSDF; Figure 6d shows the results 

of evolution through SDF; Figure 6e shows the result of 

evolution through WF. Except the first line model in Fig-

ure 6c, all other images are the results after 100 iterations, 

the time step is taken to be 0.0113. Due to the QSDF area 

reduction effect, further iteration will be singular, first 

line model in Figure 6c is the result after 64 iterations. 

These figures clearly show the 
1G  smoothness at the 

splicing boundaries and the difference between the effect 

of evolution. QSDF Surface is more contracted than SDF 

surface, while WF surface is more expanded than SDF 

surface. This effect is consistent with Figure 1. In Figure 

6, the three cylinders of the second line model are thicker 

than that of the first line model. It can be known that SDF 

has volume-preserving properties, WF has a swelling 

effect, while QSDF is area-reducing. Therefore, when the 

area to be filled is large, the effects of these geometric 

flows will be clearly reflected (like the first row models 

in Figure 6); if the area to be filled is small, the evolution 

difference is very small. Compared to the first row in 

Figure 5, there is no significant blending surface differ-

ence of the three four order streams in the second row. 

 
(a)                 (b)                   (c)                   (d)                 (e) 

Figure 6. Blending Surfaces 

5.3. Side fill holes 

Given surface mesh with holes, it is needy to construct 

the surface patches with 1G  smooth on boundary. Figure 

7 shows an frog model of N-sided hole filling. Figure 7c 

shows the restored surfaces after 2 iterations by using 

WF, the time step length is 0.00001. SDF and QSDF’s 

evolution results are similar. 

 
(a)                                                 (b) 

 
 (c) 

Figure 7. Frog model with N side filling hole 

5.4. Examples verification 

Example 1: Given the control point matrix 

 
2 2

ijmatrix p


of the surface: 

( 1, 1,0)   ( 1,0,1)    ( 1,1,0)

(0, 1,1)    Unknown    (0,1,1)

(1, 1,0)       (1,0,1)      (1,1,0)

    
 


 
  

 

At this point, 4i k h n m     , B-spline surface is a 

pair of quadric surfaces with 33 control vertexes . Where-

in, the required internal control point is just a 20p , so that 

equation (1) contains only one formula. By the program 

it can be calculated that the unknown internal control 

vertexes are  20 0,0,0.6p  , so that the required uni-

form surface can be drawn out , as shown in Figure 8. 

The surface area is 4.213, the maximum absolute value 

of mean curvature surface is 1.701 and the average value 

is 0.791. 

1.0

0.6

0.2

0.6
-0.2

-1.0 -0.6
0.60.2

1.00.2
-0.2-0.6

0.0

 

Figure 8. Surface that contains only one internal control 

vertex 

Example 2: Given the control point matrix 

 
3 3

ijmatrix p


 of the desired surface: 
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  (-1,-1,0)      (-1,-0.5,0.5)   (-1,0.5,0.5)      (-1,1,0)

(-0.5, -1,0.5)    Unknown      Unknown   (-0.5,1,0.5)

(0.5, -1,0.5)      Unknown      Unknown   (0.5,1,0.5)

(1, -1,0)           (1,-0.5,0.5)    (1,0.5,0.5)   (1,1,0)

 
 
 
 
 
 

 

Use bi-quadratic uniform B-spline surfaces to design, 

,i e , 4i h  , 4n m  , the number of control vertex-

es is 44. Among them, there are four required internal 

control vertexes, so the formula (20) contains four equa-

tions, we can calculate the four internal control vertexes: 

22 23

32 33

( 0.5, 0.5,0.375), ( 0.5,0.5,0.375),

(0.5, 0.5,0.375), (0.5,0.5,0.375).

P P

P P

    

  
 

The obtained B-spline minimal surfaces are shown in 

Figure 9. The surface area is 4.125, the maximum abso-

lute value of mean curvature surfaces is 6 and the aver-

age value is 1.413. 

1.0

0.6

0.2

0.6
-0.2

-1.0 -0.6

0.60.2
1.00.2

-0.2-0.6

0.0

 

Figure 9. Surface that contains four internal control 

vertexes 

6. Conclusion 

Tessellation technology provides a simple and efficient 

way to construct arbitrary topology and at the same time 

has a certain order of smoothness of the surface. Geome-

tric method is a powerful technology for constructing 

high-quality surfaces. This article organically combines 

the two together and give full play to the advantages of 

both, in a unified framework it solves some surface de-

sign problems such as surface blending, N  side fill holes 

and others which meet 
1G  boundary conditions. This 

paper has successfully constructed the finite element me-

thod for surfaces of four order geometric partial differen-

tial equations based on quadrilateral Catmull-Clark sub-

division. 
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