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Abstract: A core set extreme learning machine (CSELM) apgrésproposed in order to deal with large da-
tasets classification problem. In the first stathe, core set can be obtained efficiently by ushegy genera-
lized core vector machine (GCVM) algorithm. For Hezond stage, the extreme learning machine (Elav) c
be used to implement classification for much lamdgtasets. Experiments show that the CSELM has aemp
rable performance with SVM and ELM implementatiomst is faster on large datasets.
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1. Introduction on the obtained core set and yields a decisiontifumc
) i . for classifying testing patterns. Experiments orgda
How to effectively deal with large-scale data ishat classification datasets also demonstrated that the

issue in current research. In recent years, a tyadé CSELM has comparable performance with SVM and
approaches have been proposed in large dataséis pro g| v jmplementations, but is much faster and car-han
lem. These methods include: the extreme learning ma gle much larger datasets.

chine (ELM)™ ?, ELM is a single hidden layer feed The rest of this paper is organized as follows iSe
forward network where the input weights and thesééa reviews the GCVM and ELM; and presents the CSELM
are chosen randomly and the output weights araicalc approach. In Section 3, the experimental resultseon

lated analytically; a generalized perceptron witargin eral datasets are reported. Some conclusions raatyfi
Bl which can deal with the Iarg@e datasets problem; a given in Section 4.
i

general piecewise linear classifiél, which can solve ) _
the nonlinear separable problem without kernel; the 2. Core Set Extreme Learning Machine

geometric algorithms to large margin classifierdzhaen (CSELM)
affine hulls®; by chunking or decomposition methods, . _
for example, the well-known sequential minimal opti 2.1. The Generalized Core Vector Machine

zation (SMO) algorithn¥; sampling techniques for ker-  (GCVM )
nel methods”; the core vector machine (CVMj 2,
Tsang et al. proposed the core vector machine (ChM)
utilizing an approximation algorithm for the minimu
enclosing ball (MEB) problem in computational geeme
try, the CVM algorithm achieves an asymptotictime
complexity that is lineain N and a space complexity
that is independent of N, where N is the size eftthin-

ing patterns maximum vector-angular margin core
vector machine (MAMCVM)™® by connecting the
CVM method with MAMC such that the corresponding
fast training on large datasets can be effectively
achieved.

In this section, we first review the generalizedeceec-
tor machine (The generalized CVM, GCVM) algorithm
as proposed in [9]. The GCVM algorithismuch faster
and can handle much larger datasets than exisii\g S
implementations. The generalized CVM algorithm can
be used with any linear/nonlinear kernel and can bk
applied to kernel methods such as SVR and the mgnki
SVM. Moreover, like the original CVM, its asymptoti
time complexity is again linear in N and its spaoan-
plexity is independent of N, where N is the sizethed
training patterns.

In th ; he | q . The GCVM utilizes an approximation algorithm foeth
n this paper, we focus on the large datasets tféec center constrain minimum enclosing ball (CC-MEB)

classification problem, a core set extreme learmray bl hich will be briefly introduced in Sedii
chine (CSELM) approach is proposed. It consistsvof Fz)rg 1em, which willbe brietly introduced in->ealio

stages. The first stage is to obtain the core fehe
large training dataset by using the GCVM algoritim. ~ 2.1.1. Center Constrain Minimum Enclosing Ball (CC-
the second stage, the ELM algorithm is utilizedr&in MEB)
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Suppose the training set is denoted
S={x|x OR", i=1---,N}, the minimum enclosing
ball of S (denotedMEB(S) ) is the smallest ball that
contains all the points it5. In this paper, we denote the
ball with centerc and radiusR by B(c,R). Also, the
center and radius of a bal(c,R) are denoted by,

by

and r, , respectively. Given ane>0 , a
ball B(c, 1+£)R) is an (1+¢) -approximation of
MEB(S) if R<ngs and SUB(c (1+€)R)

@ :x - @(x)denotes the feature map associated with a
given kernelk, and B(c,R) is the desired MEB in the

kernel-induced feature space.
The MEB problem finds the smallest ball containing
allg(x )OS in the feature space. In this section, we first

augment an extrad OR to eachg(x) , forming
[#(X)

L 9
points, while at the same time constraining the dasr-
dinate of the ball's center to be zero (i.e., of form

}. Then, we find the MEB for these augmented

¢ . N
0} ). The primal form of the center constrain minimum

enclosing ball (CC-MEB) problem can be formulatsd a
min R’
2 1)
st. [lp(x)-q +o* <R’

The corresponding dual of (1) is the following QP
problem

max o' diagK )+A)-a'Ka

a'l=1 a=0.

1.-- N.

2
st.
where K =[k(x, X;)] =[& >g)T¢(xj)] is the correspond-

ing kernel matrix, and
A=[&,, 8T =0 3)

From the optimalx solution of (2), we can recover
Randcas

R=./o' (diag(K)+A) -a'Ka @
c=Yap(x) ©)

The squared distance between the ce%g%rand

¢(><1)}

int
any poin { 8

lpx)-cf +82 =|d” -2(Ka), +k, +J2.  (6)
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which does not depend explicitly on the feature ghap

Because of the constraint’1=1in (2), an arbitrary

multiple of a"1can be added to the objective without

affecting its solution. In other words, for an aréiy
nOR, (2) yields the same optimal as

max o' @diagK )+A-71)-o'Ka

a'1=1 a=0.

(7)

st.

Hence, any QP problem of the form (7), with thedien
tion (3), can also be regarded as a special MEBIleno,
called center constrained MEB, i.e. CC-MEB. As
pointed out by Tsang et al., CC-MEB can be approx-
imately solved with the asymptotic linear time com-
plexity O(N) and its space complexity independento
for large datasets by using the generalized cootove
machine.

2.1.2. The GCVM Algorithm

The GCVM algorithm is shown in Algorithm 1. Here,
the core set, the ball's center, and radius attthéera-
tion are denoted by§,c,, and R respectively. The

GCVM algorithm requires the input of a termination
parametee .
The core set can be obtained by using CC-CVM.

Algorithm 1. GCVM

Step 1 Initializes, t=0,5,¢, R

Step 2 Update the core set: if there is no tngirpat-
tern that falls outside the baB(c,, (1+&)R) in
the corresponding feature spa&es S .

Step 3 Findz such that it is the farthest away frain
in the corresponding feature space and set
S.=8U{3

Step 4 Find the new MEB3(c,,,, R.,)

Step5 Set=t+1, and go to step 2.

2.2. Extreme Learning Machine (ELM)

The extreme learning machine (ELM) is a single bidd
layer feed forward network where the input weigdntsl

the biasesare chosen randomly and the output weights
are calculated analyticallyl.

LetO ={(x;, t;) | x, OR",t; OR™,i =1,...,N }be a sample
set. Standard SLFNs withhidden nodes with activation
function g(x) can approximate thedd samples with

zero error are modeled as

ZL:ﬁig(Wi X;+b)=t; j=1..N. (8)

wherew; is the weight vector connecting tité hidden
node and the input nodeg,is the weight vector con-
necting theith hidden node and the output nodes, and
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b is the threshold of thih hidden nodew, [X; denotes

the inner product ofv; andx;. These equations can be
written compactly as

HB=T. 9)
where
Hw,,..w_b,.b X, ,.Xy F
9w, X, +by) gl x,+b )
. (10)
g(w, Xy +h) 9w, By +b )

B=[B, B OR"™and T =[t,,---,t ,]' OR™™.

whereH is called the hidden layer output matrix of the
neural network.

Unlike the traditional function approximation thes
which require adjusting input weights and hiddeyeta
biases, input weights and hidden layer biases &N&L
can be randomly assigned if the activation functiom
the hidden layer are infinitely differentiable. &ftthe
input weights and the hidden layer biases are chose
randomly, SLFNs can be simply considered as aiinea
systemHp =T and the output weights (linking the hid-

den layer to the output layer) of SLFNs can be ydial
cally determined through simple generalized inverse
operation of the hidden layer output matrices.
B=H'T. (11)
whereH" is the Moore-Penrose generalized inverse of
matrix H .
If the number of hidden nodes is equal to the nurolbe
distinct training samples, matrid is square and invert-
ible when the input weight vectors and the hiddieisds

are randomly chosen, and SLFNs can approximate thes

training samples with zero error.
The ELM algorithm of SLFNs can be summarized as the
following three steps.

Algorithm 2. ELM

LetOd={(x,t)|x, OR"t, OR™,i=1,....N}be a given

training set, activation function ¢{x) , and hidden node

number id_,

Stepl: Randomly assign input weight and bias
b (i=1...L). For any weights and biases are
randomly chosen from any intervals of

R"andR , respectively, according to any conti-
nuous probability distribution in Matlab (using
Matlabrand function).

Step 2: Compute the hidden layer output matrixhef

network denoted b ORMN" .
Step 3: Calculate the output weighfIR™™.

B=H'T,
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where T=[t,..t [ OR™™ . H' is the

Moore-Penrose generalized inverse of matrix
H.

2.3. The CSELM Algorithm

We can now give a fast training algorithm for laogea-
sets which is called the core set extreme learniag
chine (CSELM). It consists of two stages. The fatstge

is to obtain the core set of the large trainingadet by
using GCVM. In the second stage, the ELM algoriibm
utilized to train on the obtained core set anddgea
decision function for classifying testing patterns.
CSELM can be summarized as follows:

Algorithm 3. CSELM

Sage 1: Using GCVM to obtain the core set.
Step 1 |Initializ¢, t=0,§,¢c, R
Step 2 Update the core set: if there is no tngirpat-
tern that falls outside the baB(c,, (1+£)R ) in
the corresponding feature space, go to step 6.
Findz such that it is the farthest away frain
in the corresponding feature space and set
S.=5U{3

Find the new MEBB(c,,,, R,,)

Set=t+1, and go to step 2.

Step 3

Step 4
Step 5

Stage 2: Using ELM to train the core s§t.

Given activation functiorg(x) , and hidden
node numbet. ,

Step 6 Randomly assign input weight and bias
b (i=1...L). For any weights and biases are
randomly chosen from any intervals of

R"andR , respectively, according to any conti-
nuous probability distribution in Matlab (using
Matlabrand function).

Compute the hidden layer output matrixhef t

network denoted b ORN*" .

Step 7

Step 8 Calculate the output weighflR" ™.
B=H'T,
where T=[t,..t ,J OR™™ . H' is the

Moore-Penrose generalized inverse of matrix
H (Using Matlabpinv function).

3. Experimental Results

In this section, we conduct the performance corspari
of the three methods for seven real problems: Digit
DNA, Letter, Sat, Shuttle, Spambase, and Usps. ldist

the datasets are taken from the UCI machine legrnin

repository?. Usps is taken from databa$g. All the
simulations are carried out in MATLAB7.1 environmen
running in Intel Core(TM) i5-2400, 3.10GHz, 8GBRAM.
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LIBSVM is used the libsvm-mat-2.89-3 versiéfh The
numbers of attributes, samples for training andirtgs
are shown in Table 1.

In all experiments, the naive QP solver is adopted
solve the QP problem and the Gaussian functioakisrt

as the kernel functiOI’l(()g,x.)=exp(—||>g—xj"2 /h).

where h is the kernel parameter of the Gaussianeker
The width parameter h is selected to the mean eduar

2
norm of the training datah=(1/N2)ZN:||>g =X, || . Set-
ij=1

ting an appropriate the approximation parameteis
important in CSELM. The smalles will result in more
core vectors and the classification speed becolness
In our experiment, the activation function in ELMhieh
has better performance is selected from amongitiee
sigmoid, and RBF functions. Thesigmoid function
g(x) =1/(1+ expEx )) was used as an activation func-

tion for all models. In the real-world problems.eth
attributes of their training and testing datasetsrew
scaled to [-1, 1]. The parameters in CSELM and the
numbers of hidden nodes in ELM are shown in Table 2
CSELM is the proposed method in this paper. The-wel
known sequential minimal optimization (SMO) algo-
rithm is used in LIBSVM.

Ten trials were conducted for the three algoritrand

the average results are shown in Tables 3 andble 3a
shows the performance comparison of testing acgurac
of the three methods in the real-world problems.ohs
served from the Table 3, general speaking, testoty-
racy of CSELM is slightly lower than LIBSVM and
ELM methods. This is the reason which we want te im
prove the classification speed of CSELM, and sefeet
bigger parameter. When £ decreases, the testing ac-
curacy becomes higher, and both the number ofdhe ¢
set and the training time increase accordingly. egalty,

€ =1e-6 is acceptable in the trade-off of the trainin
speed and the classification accuracy for mostcase
Table 4 shows the performance comparison of average
training and testing time of the three method$ireal-
world problems. As observed from the Table 4, the
learning speed is different; CSELM obtains compkerab
performance to LIBSVM and ELM methods with much
faster learning speed in most datasets. CSELM $eapn

to 2-10 times faster than ELM in training time. QSE
learns up to 1.5-15 times faster than LIBSVM irirtiieg
time. Generally, CSELM is faster than LIBSVM and
ELM and can reach comparable generalization perfor-
mance, which could greatly speed up the application
running time in many problem domains.

Table 1. Description of datasets

TABLE I. DATASETS TABLE II. # ATTRIBUTES TABLE Il # TRAINING TABLE IV. #TESTING
TABLE V. DiGIT TABLE VI. 64 TABLE VII. 2810 TABLE VIII. 2810
TABLE IX. DNA TABLE X. 180 TABLE XI. 3457 TABLE XII. 1729

TABLE XIIl.  LETTER TABLE XIV. 16 TABLE XV. 10000 TABLE XVI. 10000
TABLE XVII.  SAT TABLE XVIIl. 36 TABLE XIX. 3217 TABLE XX. 3218

TABLE XXI.  SHUTTLE TABLE XXII. 9 TABLE XXIll. 29000 TABLE XXIV. 29000

TABLE XXV. SPAMBASE TABLE XXVI. 57 TABLE XXVIL. 2300 TABLE XXVIII. 2301
TABLE XXIX. UsPs TABLE XXX. 256 TABLE XXXI. 6198 TABLE XXXII. 3100

4. Conclusions and Future Work

The GCVM utilizes an approximation algorithm foeth
center constrain minimum enclosing ball (CC-MEB)

by using the GCVM algorithm. The GCVM algorithm
asymptotic time complexity is again linear in N atwl
space complexity is independent of N, where N & th
size of the training patterns. Thus, we can obthm

problem. We proposed the core set extreme learningcore set quickly, and the size of the training sets can
machine (CSELM) approach. It consists of two stages Pe significantly reduced. For the second stageethe

In the first stage, the core set can be obtaingcieaftly
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treme learning machine (ELM) can be used to imple-



Shuxia Lu, Bin Liu, Caihong Jiao

ment classification. Experiments show that the CHEL
has comparable performance with SVM and ELM im-
plementations, but is faster on large datasets.

Further work includes how to select the parameiers
algorithms and how to improve the generalization pe
formance of algorithms.

Table 2. Parameters in the experiment

Datasets # hidden nodes in ELM € in CSELM
Digit 400 le-3
DNA 400 le-3
Letter 400 le-4

Sat 400 le-3

Shuttle 200 le-3

Spambase 400 le-3
Usps 400 le-3

Table 3. Comparison of testing accuracy of the threme-
thods
Datasets LIBSVM ELM CSELM

Digit 99.7865 98.11 93.71

DNA 98.3227 93.06 92.75

Letter 99.1600 87.27 97.08
Sat 98.8813 89.00 91.58

Shuttle 95.76 99.63 98.88

Spambase 87.7879 89.05 87.83

Usps 98.5806 95.26 94.32

Table 4. Comparison of time of the three methods

LIBSVM ELM CSELM

Datasets Training Training Training
testing testing testing

Digit 0.4212 1.3572 0.3152
0.2808 0.0780 0.0156

DNA 14.2897 1.9188 0.9156
5.0700 0.0936 0.8195

Letter 1.2792 4.2900 0.4156
0.8580 0.2496 0.0312

Sat 0.3588 1.6068 0.4156
0.2340 0.1092 0.0312

Shuttle 35.9114 3.5412 0.2028
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22.0741 0.2808 0.0936
Spambase 1.4508 1.2012 0.0156
0.9828 0.0624 0
Usps 31.9490 3.0732 3.0125
11.2477 0.2184 0.0312
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