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Abstract: A core set extreme learning machine (CSELM) approach is proposed in order to deal with large da-
tasets classification problem. In the first stage, the core set can be obtained efficiently by using the genera-
lized core vector machine (GCVM) algorithm. For the second stage, the extreme learning machine (ELM) can 
be used to implement classification for much larger datasets. Experiments show that the CSELM has compa-
rable performance with SVM and ELM implementations, but is faster on large datasets. 

Keywords: Core vector machine; Extreme learning machine; Support vector machine; Core set 

 
1. Introduction 

How to effectively deal with large-scale data is a hot 
issue in current research. In recent years, a variety of 
approaches have been proposed in large datasets prob-
lem. These methods include: the extreme learning ma-
chine (ELM) [1, 2], ELM is a single hidden layer feed 
forward network where the input weights and the biases 
are chosen randomly and the output weights are calcu-
lated analytically; a generalized perceptron with margin 
[3], which can deal with the large datasets problem; a 
general piecewise linear classifier [4], which can solve 
the nonlinear separable problem without kernel; the 
geometric algorithms to large margin classifier based on 
affine hulls [5]; by chunking or decomposition methods, 
for example, the well-known sequential minimal optimi-
zation (SMO) algorithm [6]; sampling techniques for ker-
nel methods [7]; the core vector machine (CVM) [8, 9], 
Tsang et al. proposed the core vector machine (CVM) by 
utilizing an approximation algorithm for the minimum 
enclosing ball (MEB) problem in computational geome-
try, the CVM algorithm achieves an asymptotictime 
complexity that is linear in N and a space complexity 
that is independent of N, where N is the size of the train-
ing patterns； maximum vector-angular margin core 
vector machine (MAMCVM) [10], by connecting the 
CVM method with MAMC such that the corresponding 
fast training on large datasets can be effectively 
achieved. 
In this paper, we focus on the large datasets effective 
classification problem, a core set extreme learning ma-
chine (CSELM) approach is proposed. It consists of two 
stages. The first stage is to obtain the core set of the 
large training dataset by using the GCVM algorithm. In 
the second stage, the ELM algorithm is utilized to train 

on the obtained core set and yields a decision function 
for classifying testing patterns. Experiments on large 
classification datasets also demonstrated that the 
CSELM has comparable performance with SVM and 
ELM implementations, but is much faster and can han-
dle much larger datasets. 
The rest of this paper is organized as follows. Section 2 
reviews the GCVM and ELM; and presents the CSELM 
approach. In Section 3, the experimental results on sev-
eral datasets are reported. Some conclusions are finally 
given in Section 4. 

2. Core Set Extreme Learning Machine
（（（（CSELM））））  

2.1. The Generalized Core Vector Machine 
(GCVM ）））） 

In this section, we first review the generalized core vec-
tor machine (The generalized CVM, GCVM) algorithm 
as proposed in [9]. The GCVM algorithm is much faster 
and can handle much larger datasets than existing SVM 
implementations. The generalized CVM algorithm can 
be used with any linear/nonlinear kernel and can also be 
applied to kernel methods such as SVR and the ranking 
SVM. Moreover, like the original CVM, its asymptotic 
time complexity is again linear in N and its space com-
plexity is independent of N, where N is the size of the 
training patterns.  
The GCVM utilizes an approximation algorithm for the 
center constrain minimum enclosing ball (CC-MEB) 
problem, which will be briefly introduced in Section 
2.1.1. 

2.1.1. Center Constrain Minimum Enclosing Ball (CC-
MEB)  
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Suppose the training set is denoted by 
{ | , 1, , }n

i iS x x i N= ∈ =ℝ ⋯ , the minimum enclosing 

ball of S (denoted ( )MEB S ) is the smallest ball that 

contains all the points in S . In this paper, we denote the 
ball with center c  and radius R  by ( , )B Rc . Also, the 

center and radius of a ball ( , )B Rc  are denoted by Bc  

and Br , respectively. Given an 0ε > , a 

ball ( , (1 ) )B Rε+c  is an (1 )ε+ -approximation of 

( )MEB S  if ( )MEB SR r≤ and ( , (1 ) )S B Rε⊂ +c .  

: ( )i ix xϕ ϕ→ denotes the feature map associated with a 

given kernel k , and ( , )B Rc is the desired MEB in the 

kernel-induced feature space Γ . 
The MEB problem finds the smallest ball containing 

all ( )ix Sϕ ∈  in the feature space. In this section, we first 

augment an extra i Rδ ∈ to each ( )ixϕ  , forming 

( )i

i

xϕ
δ

 
 
 

. Then, we find the MEB for these augmented 

points, while at the same time constraining the last coor-
dinate of the ball’s center to be zero (i.e., of the form 

0

 
 
 

c
). The primal form of the center constrain minimum 

enclosing ball (CC-MEB) problem can be formulated as 
2

2 2 2

min

. . ( ) , 1, , .i i

R

s t x R i Nϕ δ− + ≤ =c ⋯
              (1) 

The corresponding dual of (1) is the following QP 
problem 

max ( ( ) )

. . 1, .

T T

T

diag

s t

+ −

= ≥

α K ∆ α Kα

α 1 α 0
                        (2) 

where [ ( , )] [ ( ) ( )]T
i j i jK k x x x xϕ ϕ= =  is the correspond-

ing kernel matrix, and 

2 2
1[ , , ] .T

Nδ δ= ≥∆ 0⋯                            (3) 

From the optimal α solution of (2), we can recover 
R and c as 

( ( ) )T TR diag= + −α K ∆ α Kα                     (4) 

1

( ).
N

i i
i

xα ϕ
=

=∑c                                  (5) 

The squared distance between the center 
0

 
 
 

c
and 

any point 
( )l

l

xϕ
δ

 
 
 

 

2 22 2( ) 2( ) .l l l ll lx kϕ δ δ− + = − + +c c Kα         (6) 

which does not depend explicitly on the feature mapϕ .  

Because of the constraint 1T =α 1 in (2), an arbitrary 

multiple of Tα 1 can be added to the objective without 

affecting its solution. In other words, for an arbitrary 
η ∈ℝ , (2) yields the same optimal as 

max ( ( ) )

. . 1, .

T T

T

diag

s t

η+ − −

= ≥

α K ∆ 1 α Kα

α 1 α 0
                (7) 

Hence, any QP problem of the form (7), with the condi-
tion (3), can also be regarded as a special MEB problem, 
called center constrained MEB, i.e. CC-MEB. As 
pointed out by Tsang et al., CC-MEB can be approx-
imately solved with the asymptotic linear time com-
plexity O(N) and its space complexity independent of N 
for large datasets by using the generalized core vector 
machine. 

2.1.2. The GCVM Algorithm 

The GCVM algorithm is shown in Algorithm 1. Here, 
the core set, the ball’s center, and radius at the tth itera-
tion are denoted by ,t tS c , and tR respectively. The 

GCVM algorithm requires the input of a termination 
parameterε . 
The core set can be obtained by using CC-CVM. 

Algorithm 1.  GCVM 
Step 1    Initialize ε , 0, ,t t tt S R= c ,  
Step 2   Update the core set: if there is no training pat-

tern that falls outside the ball ( , (1 ) )t tB Rε+c  in 

the corresponding feature space, tS S= . 

Step 3   Find z  such that it is the farthest away from tc  
in the corresponding feature space and set 

1 { }t tS S+ = z∪  

Step 4    Find the new MEB: 1 1( , )t tB R+ +c  
Step 5    Set 1t t= + , and go to step 2. 
 

2.2.  Extreme Learning Machine (ELM) 

The extreme learning machine (ELM) is a single hidden 
layer feed forward network where the input weights and 
the biases are chosen randomly and the output weights 
are calculated analytically [1]. 
Let {( , ) | , , 1,..., }n m

i i i i i Nℵ = ∈ ∈ =x t x tℝ ℝ be a sample 

set. Standard SLFNs withL hidden nodes with activation 
function ( )g x can approximate theseN samples with 

zero error are modeled as 

1

( )
L

i i j i j
i

g bβ
=

⋅ + =∑ w x t   1,...,j N= .                    (8) 

where iw is the weight vector connecting the ith hidden 

node and the input nodes, iβ is the weight vector con-

necting the ith hidden node and the output nodes, and 
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ib is the threshold of the ith hidden node, i j⋅w x denotes 

the inner product of iw and jx . These equations can be 

written compactly as 
=Hβ T .                                                       (9) 

where 

1 1 1( ,..., , ,..., , ,..., )L L Nb b =H w w x x  

1 1 1 1

1 1

( ) .... ( )

.... .... ....

( ) .... ( )

L L

N L N L N L

g b g b

g b g b
×

⋅ + ⋅ + 
 
 
 ⋅ + ⋅ + 

w x w x

w x w x

  (10) 

1[ , , ]T L m
Lβ β ×= ∈β ⋯ ℝ and 1[ , , ]T N m

N
×= ∈T t t⋯ ℝ . 

whereH is called the hidden layer output matrix of the 
neural network.  
Unlike the traditional function approximation theories 
which require adjusting input weights and hidden layer 
biases, input weights and hidden layer biases of SLFNs 
can be randomly assigned if the activation functions in 
the hidden layer are infinitely differentiable. After the 
input weights and the hidden layer biases are chosen 
randomly, SLFNs can be simply considered as a linear 
system =Hβ T and the output weights (linking the hid-

den layer to the output layer) of SLFNs can be analyti-
cally determined through simple generalized inverse 
operation of the hidden layer output matrices. 

†=β H T .                                   (11) 

where †H  is the Moore-Penrose generalized inverse of 
matrix H . 
If the number of hidden nodes is equal to the number of 
distinct training samples, matrix H  is square and invert-
ible when the input weight vectors and the hidden biases 
are randomly chosen, and SLFNs can approximate these 
training samples with zero error. 
The ELM algorithm of SLFNs can be summarized as the 
following three steps. 

Algorithm 2.  ELM 
Let {( , ) | , , 1,..., }n m

i i i i i Nℵ = ∈ ∈ =x t x tℝ ℝ be a given 

training set, activation function is( )g x , and hidden node 

number isL ,  
Step1:  Randomly assign input weight iw  and bias 

ib ( 1,..., )i L= . For any weights and biases are 

randomly chosen from any intervals of 
n
ℝ andℝ , respectively, according to any conti-
nuous probability distribution in Matlab (using 
Matlab rand function). 

Step 2:  Compute the hidden layer output matrix of the 
network denoted by N L×∈H ℝ . 

Step 3:  Calculate the output weight L m×∈β ℝ .  
†=β H T ,                                                         

where 1[ ,..., ]T N m
N

×= ∈Τ t t ℝ . †H  is the 

Moore-Penrose generalized inverse of matrix 
H .  

2.3. The CSELM Algorithm 

We can now give a fast training algorithm for large data-
sets which is called the core set extreme learning ma-
chine (CSELM). It consists of two stages. The first stage 
is to obtain the core set of the large training dataset by 
using GCVM. In the second stage, the ELM algorithm is 
utilized to train on the obtained core set and yields a 
decision function for classifying testing patterns. 
CSELM can be summarized as follows: 

Algorithm 3.  CSELM  

Stage 1:  Using GCVM to obtain the core set. 
Step 1    Initializeε , 0, ,t t tt S R= c ,  
Step 2   Update the core set: if there is no training pat-

tern that falls outside the ball ( , (1 ) )t tB Rε+c  in 
the corresponding feature space, go to step 6. 

Step 3   Find z  such that it is the farthest away from tc  
in the corresponding feature space and set 

1 { }t tS S+ = z∪  

Step 4    Find the new MEB: 1 1( , )t tB R+ +c  
Step 5    Set 1t t= + , and go to step 2. 

Stage 2:  Using ELM to train the core settS . 

Given activation function ( )g x , and hidden 

node numberL ,  
Step 6 Randomly assign input weight iw  and bias 

ib ( 1,..., )i L= . For any weights and biases are 

randomly chosen from any intervals of 
n
ℝ andℝ , respectively, according to any conti-
nuous probability distribution in Matlab (using 
Matlab rand function). 

Step 7  Compute the hidden layer output matrix of the 
network denoted by N L×∈H ℝ . 

Step 8    Calculate the output weight L m×∈β ℝ .  
†=β H T ,                                                         

where 1[ ,..., ]T N m
N

×= ∈Τ t t ℝ . †H  is the 

Moore-Penrose generalized inverse of matrix 
H (Using Matlab pinv function).  
 

3. Experimental Results 

In this section, we conduct the performance comparison 
of the three methods for seven real problems: Digit, 
DNA, Letter, Sat, Shuttle, Spambase, and Usps. Most of 
the datasets are taken from the UCI machine learning 
repository [12]. Usps is taken from database [13]. All the 
simulations are carried out in MATLAB7.1 environment 
running in Intel Core(TM) i5-2400, 3.10GHz, 8GBRAM. 
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LIBSVM is used the libsvm-mat-2.89-3 version [11]. The 
numbers of attributes, samples for training and testing 
are shown in Table 1. 

In all experiments, the naive QP solver is adopted to 
solve the QP problem and the Gaussian function is taken 

as the kernel function
2

( , ) exp( / ).i j i jk x x x x h= − −  

where h is the kernel parameter of the Gaussian kernel. 
The width parameter h is selected to the mean squared 

norm of the training data, 
2

2

, 1

(1/ )
N

i j
i j

h N x x
=

= −∑ . Set-

ting an appropriate the approximation parameter ε  is 
important in CSELM. The smaller ε will result in more 
core vectors and the classification speed becomes slower. 
In our experiment, the activation function in ELM which 
has better performance is selected from among the sine, 
sigmoid, and RBF functions. The sigmoid function 

( ) 1/(1 exp( ))g = + −x x  was used as an activation func-

tion for all models. In the real-world problems, the 
attributes of their training and testing datasets were 
scaled to [-1, 1]. The parameters in CSELM and the 
numbers of hidden nodes in ELM are shown in Table 2. 
CSELM is the proposed method in this paper. The well-
known sequential minimal optimization (SMO) algo-
rithm is used in LIBSVM. 

Ten trials were conducted for the three algorithms and 
the average results are shown in Tables 3 and 4. Table 3 
shows the performance comparison of testing accuracy 
of the three methods in the real-world problems. As ob-
served from the Table 3, general speaking, testing accu-
racy of CSELM is slightly lower than LIBSVM and 
ELM methods. This is the reason which we want to im-
prove the classification speed of CSELM, and select the 
bigger parameterε . When ε  decreases, the testing ac-
curacy becomes higher, and both the number of the core 
set and the training time increase accordingly. Generally, 
ε =1e-6 is acceptable in the trade-off of the training 
speed and the classification accuracy for most cases. 
Table 4 shows the performance comparison of average 
training and testing time of the three methods in the real-
world problems. As observed from the Table 4, the 
learning speed is different; CSELM obtains comparable 
performance to LIBSVM and ELM methods with much 
faster learning speed in most datasets. CSELM learns up 
to 2-10 times faster than ELM in training time. CSELM 
learns up to 1.5-15 times faster than LIBSVM in training 
time. Generally, CSELM is faster than LIBSVM and 
ELM and can reach comparable generalization perfor-
mance, which could greatly speed up the application 
running time in many problem domains.  

 
Table 1. Description of datasets 

TABLE I.  DATASETS TABLE II.  # ATTRIBUTES TABLE III.  # TRAINING TABLE IV.  # TESTING 

TABLE V.  DIGIT  TABLE VI.  64 TABLE VII.  2810 TABLE VIII.  2810 

TABLE IX.  DNA TABLE X.  180 TABLE XI.  3457 TABLE XII.  1729 

TABLE XIII.  LETTER  TABLE XIV.  16 TABLE XV.  10000 TABLE XVI.  10000 

TABLE XVII.  SAT  TABLE XVIII.  36 TABLE XIX.  3217 TABLE XX.  3218 

TABLE XXI.  SHUTTLE  TABLE XXII.  9 TABLE XXIII.  29000 TABLE XXIV.  29000 

TABLE XXV.  SPAMBASE TABLE XXVI.  57 TABLE XXVII.  2300 TABLE XXVIII.  2301 

TABLE XXIX.  USPS TABLE XXX.  256 TABLE XXXI.  6198 TABLE XXXII.  3100 

 

4. Conclusions and Future Work 

The GCVM utilizes an approximation algorithm for the 
center constrain minimum enclosing ball (CC-MEB) 
problem. We proposed the core set extreme learning 
machine (CSELM) approach. It consists of two stages. 
In the first stage, the core set can be obtained efficiently 

by using the GCVM algorithm. The GCVM algorithm 
asymptotic time complexity is again linear in N and its 
space complexity is independent of N, where N is the 
size of the training patterns. Thus, we can obtain the 
core set quickly, and the size of the training datasets can 
be significantly reduced. For the second stage, the ex-
treme learning machine (ELM) can be used to imple-
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ment classification. Experiments show that the CSELM 
has comparable performance with SVM and ELM im-
plementations, but is faster on large datasets.  
Further work includes how to select the parameters in 
algorithms and how to improve the generalization per-
formance of algorithms. 

 
Table 2. Parameters in the experiment 

Datasets # hidden nodes  in ELM ε  in CSELM 

Digit 400 1e-3 

DNA 400 1e-3 

Letter 400 1e-4 

Sat 400 1e-3 

Shuttle 200 1e-3 

Spambase 400 1e-3 

Usps 400 1e-3 

 
 

Table 3. Comparison of testing accuracy of the three me-
thods 

Datasets LIBSVM ELM CSELM 

Digit 99.7865 98.11 93.71 

DNA 98.3227 93.06 92.75 

Letter 99.1600 87.27 97.08 

Sat 98.8813 89.00 91.58 

Shuttle 95.76 99.63 98.88 

Spambase 87.7879 89.05 87.83 

Usps 98.5806 95.26 94.32 

 

Table 4. Comparison of time of the three methods 

Datasets 
LIBSVM 
Training  
testing 

ELM 
Training  
testing 

CSELM 
Training  
testing 

 
Digit 

 
0.4212 
0.2808 

 
1.3572 
0.0780 

 
0.3152 
0.0156 

 
DNA 

 
14.2897 
5.0700 

 
1.9188 
0.0936 

 
0.9156 
0.8195 

 
Letter 

 
1.2792 
0.8580 

 
4.2900 
0.2496 

 
0.4156 
0.0312 

 
Sat 

 
0.3588 
0.2340 

 
1.6068 
0.1092 

 
0.4156 
0.0312 

 
Shuttle 

 
35.9114 

 
3.5412 

 
0.2028 

22.0741 0.2808 0.0936 

 
Spambase 

 
1.4508 
0.9828 

 
1.2012 
0.0624 

 
0.0156 

0 
 

Usps 
 

31.9490 
11.2477 

 
3.0732 
0.2184 

 
3.0125 
0.0312 
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