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A Multi-task Pathfinding Method Based 
on CBR and Kd-tree 

Yan Li, Sen Liang, Lanming Su, Jiacheng He 
Key Lab. In Machine Learning and Computational Intelligence 

College of Mathematics and Computer Science, Hebei University 
Baoding, China 

 
Abstract: Pathfinding is a typical task in many computer games, and its performance will affect the quality of 
game AI. In order to enhance the efficiency of multi-task pathfinding, case-based reasoning has been intro-
duced in traditional A* algorithm, called the CBMT method. The method needs to select representative paths 
which can cover the whole map to build a compact case base, which is difficult in large maps. Besides, re-
peatedly searching for similar cases for each pathfinding task would be a time consuming process. To address 
these problems, we provide a kd-tree case storage structure and case retrieval mechanical in the CBMT me-
thod. The pre-stored cases (previously found paths) are generated randomly and incrementally. The original 
flat storage structure of the cases is changed into the kd-tree structure. Since the searching space can be re-
duced by branch pruning in case retrieval, the pathfinding efficiency has been improved obviously, and the 
number of searched nodes is also reduced. 

Keywords: Multi-task Pathfinding; Case-based Reasoning; Kd-tree; Nearest-neighbors Search Algorithm; A* 

 
1. Introduction 

Pathfinding is an important and typical task in many 
computer games, especially in real-time strategy games. 
An excellent pathfinding algorithm will surely increase 
the satisfaction degree of users. A* [1] is one of the most 
often used heuristic search algorithms, which can find the 
optimal solution when there does exist a shortest path. 
Although A* is the typical pathfinding algorithm, it suf-
fers from high time and space complexity. There are 
many improvements about A* in the literature, such as 
HPA* (Hierarchical Path-Finding A*) [2], LPA* (Life-
long Planning A*) [3-4], KNN LRTA* (k-Nearest Neigh-
bor classification algorithm and Learning Real-Time A*) 
[5], among others. HPA* is a typical hierarchical pathfind-
ing algorithm based on the concept of abstract graph. It 
firstly abstracts a large map into several linked local clus-
ters. In each cluster, several representative nodes are se-
lected and then linked by A* to generate the abstract 
graph. At the global level, clusters are traversed in a sin-
gle big step. At the local level, the optimal distances for 
crossing each cluster are pre-computed and stored. It can 
greatly reduce the problem complexity in path-finding on 
grid-based maps. However, HPA* is merely suitable for 
static environments. When the obstacle information is 
changed during the gameplay, the found path needs to be 
replanning and updated in real time. LPA* was proposed 
in 2004, which can fast update the shortest path in dy-
namic environments by storing information from pre-
vious pathfinding results. Its first search is similar to A* 

but the subsequent searches are potential faster because it 
reuses the previous search information.  
However, it was reported to be very sensitive to the posi-
tion of the changed nodes, and the pathfinding task (i.e., 
the pair of start node and destination node) should be 
fixed beforehand. In some related applications such as 
computer games, multi-task pathfinding is more often 
required for game players because they need to conti-
nuously move from one place to another or the multi-
players need to find their paths simultaneously. Therefore, 
the start and destination nodes changed from time to time. 
If we start from the scratch for each task, the strict limit 
of response time for computer games cannot be satisfied. 
In this situation, Case-Based Reasoning (CBR)[6-7] has 
been used in the multi-task pathfinding, and finds each 
path by reusing the previously found similar paths. CBR 
mimic the behavior of human being which retrieves and 
reuses past experience to solve new problems. It has been 
widely applied in many different real problems [8-10], in-
cluding in real-time games. In 2009, Vadim Bulitko, et al 
proposed KNN LRTA*, which combines K-Nearest 
Neighbor algorithm [11] with LRTA* [12]. The LRTA* 
algorithm is a real time heuristic search algorithm, which 
gets the optimal path by expanding its front state and 
updating its heuristic in the unknown environment and 
changing environment. In the offline phase of KNN 
LRTA*, the randomly found paths by A* are compressed 
into a set of subgoals and stored as cases in the case base. 
When a new task comes, the algorithm will query the 
case base for the most similar previously solved case and 
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uses its subgoals to solve the new problem. It should be 
noted that, computer games require high efficiency for 
pathfinding, while CBR needs to retrieve the case base 
for similar cases when each new task occurs which is 
very time-consuming. In [13], a case-based multi-task 
pathfinding algorithm called CBMT is developed, which 
is an incremental memory-based method. This algorithm 
can obviously reduce the number of searched nodes as 
more and more found paths (cases) are accumulated. The 
query task generated randomly can be different at each 
time. Through computing the distance between the new 
task and the stored cases, the most similar one can be 
reused and adapted as the result of the new task. This 
newly found path is then also stored as a success case and 
this completes one CBR cycle. Obviously, the CBMT 
algorithm can reduce the online search time at the cost of 
using more memory. However, there are still some dis-
advantages: Firstly, it is difficult to get the representative 
paths in large map. Secondly, it will take a lot of time to 
searching for similar paths in the case base. In this paper, 
we improve the storage structure of the case base and the 
case retrieval mechanical by using the kd-tree structure.  
The cases can still be stored incrementally and the tasks 
can be dynamic. First, many pre-stored paths are generat-
ed randomly to cover the search space as much as possi-
ble. Then the original flat storage structure of the cases is 
replaced by using kd-tree structure, and the KNN search-
ing mechanical is also changed. The experimental results 
show that, the proposed new method can improve the 
speed of searching similar cases obviously and thereby 
enhancing the efficiency of the pathfinding task. 
The remainder of this paper is organized as follows. Sec-
tion 2 explains the idea of kd-tree and the application of 
kd-tree in pathfinding. In section 3, we describe the pro-
posed multi-task pathfinding algorithm in detail. Section 
4 shows the experimental analysis and results. Finally, 
we provide the conclusion and the future work in Section 
5. 

2. Kd-tree for Pathfinding and the Case Re-
trieval Algorithm 

Kd-tree (k-dimensional tree) [14] is a data structure which 
can partition the high dimensional search space with hy-
per-rectangles. It is mainly used to quickly retrieve the 
required information in large volume of data since it can 
reduce the search space by branch pruning during infor-
mation query. Kd-tree has been used in some problems 
which have large search spaces such as 3D Point Pattern 
Matching [16], Real-time Huge Terrain Visualization[17], 
and Satellite RCS Prediction[18]. In fact, kd-tree is an ex-
tension of binary search tree to k-dimensional data, and it 
is different from binary tree because of a discriminator in 
each layer to decide the trend of the branch. 

2.1. Case Representation and Kd-tree Forming 
Process 

In this paper, the kd-tree is used to structure the pre-
stored paths to build a case base to facilitate fast path-
finding. First, we should determine the dimension of the 
kd-tree, i.e., the k value. Generally, we can represent a 
path by its start node and destination node, and their 
coordinates can be used to form a case. Then we use two 
pairs of x-coordinate and y-coordinate to represent both a 
case and task. Therefore, k is equal to 4 in the proposed 
kd-tree structure. Each case is a four-dimensional data 
point Pi (xi, yi, zi, ki), i∈[1, n]. The process to form 
such a kd-tree is described as follows. 
(1) Calculate the median of every component of all the 
data point. Then we take the median as the root of the 
tree.  
(2) Determine which component to be selected as the 
discriminator using the formula d=Lmod4, where L is the 
serial number of the kd-tree’ hierarchy. When the value 
of d equals to 0, 1, 2, 3 respectively, the components of 
xi, yi, zi, and ki will be selected correspondingly as the 
discriminator in the tree construction.  
(3) When the component value in the current node Pi is 
less than or equal to the discriminator, then we put the 
data point Pi into the left subtree, otherwise, put Pi into 
the right subtree.  
(4) Keep loop until all the points are inserted into the kd-
tree. 
Figure 1 is a kd-tree built in the way mentioned above. 
Each tree point in the kd-tree is a four-tuple (startX, star-
tY, endX, endY), which represents a task with start state 
(startX, startY) and goal state (endX, endY). The search 
space is divided in the order of startX, startY, endX, and 
endY, and the loop repeats until the kd-tree is built suc-
cessfully. 

 
Figure 1. The Kd-tree Built by 17 Points 

2.2. Case Retrieval Based on Nearest Neighbor Prin-
ciple 

Kd-tree is mainly used to reduce the search space, so as 
to improve the search efficiency. After building a tree, 
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the next key issue is case retrieval. Here we use the near-
est neighbor (NN) principle [15] to find the most similar 
case for each task. With the nearest-neighbor search algo-
rithm in kd-tree, we do not need to search all the cases 
one by one by eliminating some subtrees. For example, 
when a new task comes with the start state (8, 4) and the 
goal state (4, 9), and the task will be represented by a kd-
tree point (8, 4, 4, 9). The search process is shown in 
figure 2. Firstly, it searches in the right subtree of the root 
as the startX = 8 which is greater than the discriminator 4 
of the root; then on the second level, the left subtree of 
the next node is searched as startY(=4) is less than the 
discriminator 5; at the third level, it searches the left subt-
ree as its value of 4 for endX is less than the discrimina-
tor 6. Finally, on the fourth level, it searches the right 
subtree as its endY = 9 which is greater than the discimi-
nator 8. This process ends until it attains a leaf node, e.g., 
(6, 2, 5, 9) in Fig. 1. This leaf node is considered as the 
most similar to the task (8, 4, 4, 9) and will be reused and 
adapted to complete the new task.  
However, if we check more carefully, it is not difficult to 
find that the found leaf node (6, 2, 5, 9) is not the most 
similar case stored in the kd-tree. In fact, a back tracking 
process should be included after the leaf node is obtained.   
Firstly, we give a definition of case similarity simply 
based on Manhattan distance between two points P1 and 
P2 noted as d(P1, P2). The leaf node in the kd-tree which 
has the minimum distance to the given task P (x, y, z, k) 
is considered as the most similar case. That is, P* is 
found as the retrieved case when Mini d(Pi, P) = d(P*, P) 
and P* is a leaf node in the kd-tree. 
Secondly, the nearest-neighbor algorithm is used to pick 
out the most similar case from the case base. Based on 
the computed similarities of the new task and the stored 
cases in the kd-tree, one leaf node can be finally obtained 
when the search loop goes to the bottom level of the tree. 
This leaf node is not necessarily the most similar case. 
We should continue search the right case by backtracking.   
As shown in figure 2, the dotted lines with arrows are 
used to describe the backtracking process. The found leaf 
node is (6, 2, 5, 9) which can be regarded as a candidate 
of similar case. The following steps are:  
(1) Set the current leaf node as the nearest neighbor node, 
and then calculate the Manhattan distance d0 between 
this node and the new task.  
(2) A hypersphere H centered at the task (8, 4, 4, 9) is 
defined with radius d0.  
(3) The parent node (6, 2, 5, 8) of the leaf node is revi-
sited in such a way: If the hypersphere H intersects with 
that induced by the parent node, we will search the left 
subtree of the parent node. Otherwise, we will eliminate 
the left subtree so as to enhance the efficiency of search-
ing. Obviously, in the example showed in Fig 2, the H 
intersects with the hypersphere induced by the parent 
node (6, 2, 5, 8). So we keep on searching the left subtree 
of this parent node.  

(4) Update the minimum distance and nearest neighbor 
node. We will find that the Manhattan distance between 
the task and the current candidate node (8, 3, 3, 7) is 
smaller than d0, and then the minimum distance is up-
dated. The current node (8, 3, 3, 7) is set as the nearest 
neighbor node.  
(5)The process continues until the root node is back-
tracked. In the end, the most similar case in the whole 
case base can be obtained, i.e., (8, 3, 3, 7) in this example. 

 
Figure 2. The Kd-tree for Casebase Access 

Through the above case retrieval process, it can be seen 
that the kd-tree based on NN algorithm can guarantee 
finding the most similar case as well as reducing the 
search space effectively. 

3. Multi-task Pathfinding Based on CBR 
and Kd-tree 

As we previously mentioned, case-based reasoning has 
been incorporated in A* algorithm for multi-task path-
finding, which is called CBMT algorithm. Figure 3 
shows the process. When a new task is coming, it no 
longer uses A* to find a path from the scratch, but checks 
the cases in the memory firstly to decide whether to go 
along the previous stored paths or not. After the similari-
ty computation, if an enough similar case to the new task 
can be successfully retrieved from the case base, we will 
make use of this retrieved path to complete the new task. 
Therefore, the searching time will be reduced to the time 
of looking up the memory. With the increasing number 
of stored paths(cases), the CBMT pathfinding algorithm 
can reduce the price of A* obviously. However, there are 
still some issues to be addressed. Firstly, the pre-stored 
paths are manually selected so as to ensure that the paths 
are representative (i.e., paths can cover the whole map). 
The case selection method will not practical in large 
maps. Secondly, since the cases are stored in a flat struc-
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ture, searching for the most similar path will take up a lot 
of time with increasing number of cases. This will deteri-
orate the efficiency of CBMT algorithm.  
To address these problems, we propose a new multi-task 
pathfinding algorithm based on CBR and kd-tree. Firstly, 
we increase the number of pre-stored paths generated 
randomly in large maps to cover the whole map as much 
as possible. Since the new task will also be randomly 
generated, if the cases cover larger region in the map, the 
larger probability of the most similar cases can be suc-
cessfully found. Besides, in order to improve the quality 
of stored paths, the threshold is set as half of the map’s 
edge length. Only when the length of the randomly gen-
erated path is greater than or equal to the threshold, can it 
be stored in the case base. Otherwise, we drop it and re-
generate a new path. After each CBR cycle, the success-
fully solved task will also be saved in the case base for 
further use. With the continuous arrival of new tasks, the 
number of the cases stored in the case base is also in-
creasing. Meanwhile, more comparisons are needed for 
similarity computation, which is a time-consuming 
process. Therefore, secondly, we change the original flat 
structure of the case base to the kd-tree structure. The 
speed of searching similar case can be improved greatly, 
and then enhancing the efficiency of the algorithm. Addi-
tionally, kd-tree also support dynamic case base, in 
which the cases are stored incrementally.  

 
Figure 3. Flow Chart of the CBMT Pathfinding Algorit hm 

Figure 4 shows the new proposed pathfinding method. 
Here we firstly define three notations: Vstart, Vgoal and 
pathi, where Vstart and Vgoal denote the start node and 
the destination node of the new task, respectively; and 
pathi is the ith path stored in the memory. The process 
mainly consists of two phases: offline and online, which 
is described as follows.  
Offline phase: building a case base and stored it as a kd-
tree.  

Online phase: this phase starts when a new task comes 
which includes the following steps.  

 
Figure 4. Flow Chart of the Improved Version of the 

CBMT Pathfinding Algorithm 

Using nearest neighbor search to query the most similar 
case to the given task in the kd-tree.  
Determine whether the retrieved case can be reused ac-
cording to the distance threshold.  
Supposing pathi is one case stored in the kd-tree. It will 
be considered reused and adapted to solve the new task 
only when it is retrieved as the most similar case as well 
as it meets the threshold condition. 
Step 1 Calculate the Manhattan distance d1 between 
Vstart and the start node of pathi and also calculate the 
Manhattan distance d2 between Vgoal and the destina-
tion node of pathi.  
Step 2 Compare the summation of d1 and d2 and the set 
threshold. If the summation is greater than the threshold, 
we consider that even the most similar case found in the 
case base is not similar enough to solve the task. In this 
case, A* will be still used for the pathfinding task. Oth-
erwise, we will reuse the selected pathi.  
(3) Reuse and adapt the retrieved case.  
Step 1. Use A* to search for a path from Vstart to the 
start point of pathi.  
Step 2. Use A* to search for the other path from Vgoal to 
the goal point of pathi.  
Step 3. Combine the found two paths together with pathi 
to form a complete conncected path from the Vstart to 
Vgoal. In other words, the new task is solved by our pro-
posed method. 
Obviously, we only run A* in two small segments rather 
than the whole path. The main part of the path is generat-
ed by reading from the cache rather than searching by A*. 
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Therefore, our method can avoid the deficiency of A* by 
using the cases stored in the case base as a kd-tree. With 
the increasing number of the stored paths, the available 
information will be accumulated quickly and facilitate 
the fast problem-solving. This method supports dynamic 
and incremental data storage and fast NN searching. The 
experimental results will demonstrate its potential advan-
tage in the reduction of the searching complexity. 

4. Experimental Results 

Our experiment is carried out in a map of 500×500 pix-
els. At the beginning, we store 200 randomly generated 
paths as the case in advance. In order to guarantee the 
quality of the generated paths, we require the length is 
larger than the half of the map’s edge length. If the length 
of the path generated randomly is greater than or equal to 
the threshold, we save it to the case base. Otherwise, we 
drop it and regenerate a new path. In addition, we take 
account of the length of the new task. If the length of the 
new task is too short, there is no need to implement 
search process in this proposed method. A* algorithm 
can meet the demand of the task with low price.  
We test our improved version of CBMT pathfinding al-
gorithm by 100 new tasks. As we can see from Figure 6, 
the average number of the expanded nodes of CBMT 
pathfinding algorithm is 17482, however, the average 
number of the expanded nodes of the improved version 
of CBMT pathfinding algorithm is 8206. The average 
searching time of CBMT pathfinding algorithm is 4.68 
millisecond, and that of the improved version of CBMT 
pathfinding algorithm is 2.96 millisecond. This shows the 
improved version of CBMT pathfinding algorithm is 
more efficient with a less space cost. In other word, using 
the storage structure of kd-tree, the time of similarity 
computation has been reduced obviously. Therefore, the 
speed of searching the similar case can be improved 
greatly, and then enhancing the efficiency of the algo-
rithm. 

 
Figure 5. Comparisons of the Improved Algorithm with the 

CBMT Pathfinding Algorithm 

5. Conclusions and Future Work 

In this paper, case-based reasoning and kd-tree are used 
in multi-task pathfinding, which can reduce the search 
space effectively. With the increasing number of the 
stored paths (cases), most parts of the new task is no 
longer to complete by A*, but by reusing the pre-stored 
cases. Therefore, the proposed method can get the path 
more easily and quickly. However, with the increasing 
number of the cases, the space complexity will still in-
crease quickly. In the future work, we will further trim 
the kd-tree so as to make sure all the cases in the case 
base are representative. 
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