
HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 2, Issue 5, June 2013

International Journal of Intelligent

Information and Management Science

Volume 2, Issue 5, June 2013

http://www.hknccp.org

--

 President: Zhang Jinrong

 Chief Planner: Hu Yuejuan

Executive Chief Editor: Chen Lihua, Cui Shuzhen, Shuyu

 Editorial Board: Li Shu, Xu Ya, Gao Shufen, Ya Hui, Su Daqi, Albert, Yu Borui,

 Souza, Pei Liu, Chun Hao, Li Dhidai, Meng Yu

 Audit Committee: Lin Lichan, Xu Lijuan, Dong Peiwang, Su Jianmin, Ali Coskun, You Wenying, Chen Xingeng,

 An Xin, Yan Yanhui, Tang Ming, Yang Ming, Zhi Zhong, Xiao Han, Sun Wenjun,

 Yoon-seon Lee, Bom Sook Kim, Chang-Duk Jun, Jin Hong Cha, Tan Ker Kan,

 Tian-Hua Huang, Jorge Serra Colina, Yong Shao, Vikram Kate

 Publisher: HongKong New Century Cultural Publishing House

 Address: Unit E79, 3/F., Wing Tat Commercial Building, 97 Bonham Strand East, Sheung Wan, HK.

--

Copyright© 2013 HongKong New Century Cultural Publishing House -All Rights Reserved

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 2, Issue 5, June 2013

Contents

A Multi-task Pathfinding Method Based on CBR and Kd-tree

Yan Li, Sen Liang, Lanming Su, Jiacheng He…………………………………………………………………………………………(1)

Students Participate in Library Management and Interaction

Ping Zhang……(7)

Analysis of Contemporary College Students Employment Situation and Countermeasures

Liping Li……(11)

Standard Operation Procedure of Integration in Science and Art in College Student Management

Renhui He……(15)

College ESP Teaching Station and English Teaching Reform

Chengquan Wang………(21)

College Public Computer Room Construction Management and Maintenance Measures

Shengli Wang……(23)

Adhere Scientific Concept of Development, Constructed "Four Integrated" New Socialist Countryside

Guoyan Shan……(25)

The Educational Economic Benefits of Private Colleges in Economically Underdeveloped Areas

Mingbo Li……(31)

Rural Financial System Existing Problems and Solutions

Youren Zheng……(33)

The Cause Analysis of Ecological Crisis in Ecological Marxism Perspective

Lei Wang……(37)

The Countermeasure Analysis of Enterprise's Logistics Information Construction

Fei Peng……(41)

Research on Teaching of College English

Haiyan Zhou……(43)

Ideological and Political Education Research of College Intern

Ping Tang……… (47)

Analysis of Construction of Administrative Institutions Accounting System

Aihui Liang………(51)

Discuss on the B2B E-commerce and Supply Chain Management

Tianjing Wang……(55)

Discussion on theRole of College PE Teaching Environment in the Physical Education Teaching

Runtao Zhang…… (57)

Discussion on the International Consciousness Development of Business English Students

Keping Huang…… (61)

Research about Integration of IT and Situational English Language Teaching

Li Li…… (65)

The Role of the Government's Economic Management Under Economic Globalization

Wen Shao……… (69)

SMEs Credit Management System Construction

Jianxin Qiu…… (73)

HK.NCCP International Journal of Intelligent Information and Management Science
 ISSN: 2307-0692 Volume 2, Issue 5, June 2013

1

A Multi-task Pathfinding Method Based
on CBR and Kd-tree

Yan Li, Sen Liang, Lanming Su, Jiacheng He
Key Lab. In Machine Learning and Computational Intelligence

College of Mathematics and Computer Science, Hebei University
Baoding, China

Abstract: Pathfinding is a typical task in many computer games, and its performance will affect the quality of
game AI. In order to enhance the efficiency of multi-task pathfinding, case-based reasoning has been intro-
duced in traditional A* algorithm, called the CBMT method. The method needs to select representative paths
which can cover the whole map to build a compact case base, which is difficult in large maps. Besides, re-
peatedly searching for similar cases for each pathfinding task would be a time consuming process. To address
these problems, we provide a kd-tree case storage structure and case retrieval mechanical in the CBMT me-
thod. The pre-stored cases (previously found paths) are generated randomly and incrementally. The original
flat storage structure of the cases is changed into the kd-tree structure. Since the searching space can be re-
duced by branch pruning in case retrieval, the pathfinding efficiency has been improved obviously, and the
number of searched nodes is also reduced.

Keywords: Multi-task Pathfinding; Case-based Reasoning; Kd-tree; Nearest-neighbors Search Algorithm; A*

1. Introduction

Pathfinding is an important and typical task in many
computer games, especially in real-time strategy games.
An excellent pathfinding algorithm will surely increase
the satisfaction degree of users. A* [1] is one of the most
often used heuristic search algorithms, which can find the
optimal solution when there does exist a shortest path.
Although A* is the typical pathfinding algorithm, it suf-
fers from high time and space complexity. There are
many improvements about A* in the literature, such as
HPA* (Hierarchical Path-Finding A*) [2], LPA* (Life-
long Planning A*) [3-4], KNN LRTA* (k-Nearest Neigh-
bor classification algorithm and Learning Real-Time A*)
[5], among others. HPA* is a typical hierarchical pathfind-
ing algorithm based on the concept of abstract graph. It
firstly abstracts a large map into several linked local clus-
ters. In each cluster, several representative nodes are se-
lected and then linked by A* to generate the abstract
graph. At the global level, clusters are traversed in a sin-
gle big step. At the local level, the optimal distances for
crossing each cluster are pre-computed and stored. It can
greatly reduce the problem complexity in path-finding on
grid-based maps. However, HPA* is merely suitable for
static environments. When the obstacle information is
changed during the gameplay, the found path needs to be
replanning and updated in real time. LPA* was proposed
in 2004, which can fast update the shortest path in dy-
namic environments by storing information from pre-
vious pathfinding results. Its first search is similar to A*

but the subsequent searches are potential faster because it
reuses the previous search information.
However, it was reported to be very sensitive to the posi-
tion of the changed nodes, and the pathfinding task (i.e.,
the pair of start node and destination node) should be
fixed beforehand. In some related applications such as
computer games, multi-task pathfinding is more often
required for game players because they need to conti-
nuously move from one place to another or the multi-
players need to find their paths simultaneously. Therefore,
the start and destination nodes changed from time to time.
If we start from the scratch for each task, the strict limit
of response time for computer games cannot be satisfied.
In this situation, Case-Based Reasoning (CBR)[6-7] has
been used in the multi-task pathfinding, and finds each
path by reusing the previously found similar paths. CBR
mimic the behavior of human being which retrieves and
reuses past experience to solve new problems. It has been
widely applied in many different real problems [8-10], in-
cluding in real-time games. In 2009, Vadim Bulitko, et al
proposed KNN LRTA*, which combines K-Nearest
Neighbor algorithm [11] with LRTA* [12]. The LRTA*
algorithm is a real time heuristic search algorithm, which
gets the optimal path by expanding its front state and
updating its heuristic in the unknown environment and
changing environment. In the offline phase of KNN
LRTA*, the randomly found paths by A* are compressed
into a set of subgoals and stored as cases in the case base.
When a new task comes, the algorithm will query the
case base for the most similar previously solved case and

Yan Li, Sen Liang, Lanming Su, Jiacheng He

2

uses its subgoals to solve the new problem. It should be
noted that, computer games require high efficiency for
pathfinding, while CBR needs to retrieve the case base
for similar cases when each new task occurs which is
very time-consuming. In [13], a case-based multi-task
pathfinding algorithm called CBMT is developed, which
is an incremental memory-based method. This algorithm
can obviously reduce the number of searched nodes as
more and more found paths (cases) are accumulated. The
query task generated randomly can be different at each
time. Through computing the distance between the new
task and the stored cases, the most similar one can be
reused and adapted as the result of the new task. This
newly found path is then also stored as a success case and
this completes one CBR cycle. Obviously, the CBMT
algorithm can reduce the online search time at the cost of
using more memory. However, there are still some dis-
advantages: Firstly, it is difficult to get the representative
paths in large map. Secondly, it will take a lot of time to
searching for similar paths in the case base. In this paper,
we improve the storage structure of the case base and the
case retrieval mechanical by using the kd-tree structure.
The cases can still be stored incrementally and the tasks
can be dynamic. First, many pre-stored paths are generat-
ed randomly to cover the search space as much as possi-
ble. Then the original flat storage structure of the cases is
replaced by using kd-tree structure, and the KNN search-
ing mechanical is also changed. The experimental results
show that, the proposed new method can improve the
speed of searching similar cases obviously and thereby
enhancing the efficiency of the pathfinding task.
The remainder of this paper is organized as follows. Sec-
tion 2 explains the idea of kd-tree and the application of
kd-tree in pathfinding. In section 3, we describe the pro-
posed multi-task pathfinding algorithm in detail. Section
4 shows the experimental analysis and results. Finally,
we provide the conclusion and the future work in Section
5.

2. Kd-tree for Pathfinding and the Case Re-
trieval Algorithm

Kd-tree (k-dimensional tree) [14] is a data structure which
can partition the high dimensional search space with hy-
per-rectangles. It is mainly used to quickly retrieve the
required information in large volume of data since it can
reduce the search space by branch pruning during infor-
mation query. Kd-tree has been used in some problems
which have large search spaces such as 3D Point Pattern
Matching [16], Real-time Huge Terrain Visualization[17],
and Satellite RCS Prediction[18]. In fact, kd-tree is an ex-
tension of binary search tree to k-dimensional data, and it
is different from binary tree because of a discriminator in
each layer to decide the trend of the branch.

2.1. Case Representation and Kd-tree Forming
Process

In this paper, the kd-tree is used to structure the pre-
stored paths to build a case base to facilitate fast path-
finding. First, we should determine the dimension of the
kd-tree, i.e., the k value. Generally, we can represent a
path by its start node and destination node, and their
coordinates can be used to form a case. Then we use two
pairs of x-coordinate and y-coordinate to represent both a
case and task. Therefore, k is equal to 4 in the proposed
kd-tree structure. Each case is a four-dimensional data
point Pi (xi, yi, zi, ki), i∈[1, n]. The process to form
such a kd-tree is described as follows.
(1) Calculate the median of every component of all the
data point. Then we take the median as the root of the
tree.
(2) Determine which component to be selected as the
discriminator using the formula d=Lmod4, where L is the
serial number of the kd-tree’ hierarchy. When the value
of d equals to 0, 1, 2, 3 respectively, the components of
xi, yi, zi, and ki will be selected correspondingly as the
discriminator in the tree construction.
(3) When the component value in the current node Pi is
less than or equal to the discriminator, then we put the
data point Pi into the left subtree, otherwise, put Pi into
the right subtree.
(4) Keep loop until all the points are inserted into the kd-
tree.
Figure 1 is a kd-tree built in the way mentioned above.
Each tree point in the kd-tree is a four-tuple (startX, star-
tY, endX, endY), which represents a task with start state
(startX, startY) and goal state (endX, endY). The search
space is divided in the order of startX, startY, endX, and
endY, and the loop repeats until the kd-tree is built suc-
cessfully.

Figure 1. The Kd-tree Built by 17 Points

2.2. Case Retrieval Based on Nearest Neighbor Prin-
ciple

Kd-tree is mainly used to reduce the search space, so as
to improve the search efficiency. After building a tree,

Yan Li, Sen Liang, Lanming Su, Jiacheng He

3

the next key issue is case retrieval. Here we use the near-
est neighbor (NN) principle [15] to find the most similar
case for each task. With the nearest-neighbor search algo-
rithm in kd-tree, we do not need to search all the cases
one by one by eliminating some subtrees. For example,
when a new task comes with the start state (8, 4) and the
goal state (4, 9), and the task will be represented by a kd-
tree point (8, 4, 4, 9). The search process is shown in
figure 2. Firstly, it searches in the right subtree of the root
as the startX = 8 which is greater than the discriminator 4
of the root; then on the second level, the left subtree of
the next node is searched as startY(=4) is less than the
discriminator 5; at the third level, it searches the left subt-
ree as its value of 4 for endX is less than the discrimina-
tor 6. Finally, on the fourth level, it searches the right
subtree as its endY = 9 which is greater than the discimi-
nator 8. This process ends until it attains a leaf node, e.g.,
(6, 2, 5, 9) in Fig. 1. This leaf node is considered as the
most similar to the task (8, 4, 4, 9) and will be reused and
adapted to complete the new task.
However, if we check more carefully, it is not difficult to
find that the found leaf node (6, 2, 5, 9) is not the most
similar case stored in the kd-tree. In fact, a back tracking
process should be included after the leaf node is obtained.
Firstly, we give a definition of case similarity simply
based on Manhattan distance between two points P1 and
P2 noted as d(P1, P2). The leaf node in the kd-tree which
has the minimum distance to the given task P (x, y, z, k)
is considered as the most similar case. That is, P* is
found as the retrieved case when Mini d(Pi, P) = d(P*, P)
and P* is a leaf node in the kd-tree.
Secondly, the nearest-neighbor algorithm is used to pick
out the most similar case from the case base. Based on
the computed similarities of the new task and the stored
cases in the kd-tree, one leaf node can be finally obtained
when the search loop goes to the bottom level of the tree.
This leaf node is not necessarily the most similar case.
We should continue search the right case by backtracking.
As shown in figure 2, the dotted lines with arrows are
used to describe the backtracking process. The found leaf
node is (6, 2, 5, 9) which can be regarded as a candidate
of similar case. The following steps are:
(1) Set the current leaf node as the nearest neighbor node,
and then calculate the Manhattan distance d0 between
this node and the new task.
(2) A hypersphere H centered at the task (8, 4, 4, 9) is
defined with radius d0.
(3) The parent node (6, 2, 5, 8) of the leaf node is revi-
sited in such a way: If the hypersphere H intersects with
that induced by the parent node, we will search the left
subtree of the parent node. Otherwise, we will eliminate
the left subtree so as to enhance the efficiency of search-
ing. Obviously, in the example showed in Fig 2, the H
intersects with the hypersphere induced by the parent
node (6, 2, 5, 8). So we keep on searching the left subtree
of this parent node.

(4) Update the minimum distance and nearest neighbor
node. We will find that the Manhattan distance between
the task and the current candidate node (8, 3, 3, 7) is
smaller than d0, and then the minimum distance is up-
dated. The current node (8, 3, 3, 7) is set as the nearest
neighbor node.
(5)The process continues until the root node is back-
tracked. In the end, the most similar case in the whole
case base can be obtained, i.e., (8, 3, 3, 7) in this example.

Figure 2. The Kd-tree for Casebase Access

Through the above case retrieval process, it can be seen
that the kd-tree based on NN algorithm can guarantee
finding the most similar case as well as reducing the
search space effectively.

3. Multi-task Pathfinding Based on CBR
and Kd-tree

As we previously mentioned, case-based reasoning has
been incorporated in A* algorithm for multi-task path-
finding, which is called CBMT algorithm. Figure 3
shows the process. When a new task is coming, it no
longer uses A* to find a path from the scratch, but checks
the cases in the memory firstly to decide whether to go
along the previous stored paths or not. After the similari-
ty computation, if an enough similar case to the new task
can be successfully retrieved from the case base, we will
make use of this retrieved path to complete the new task.
Therefore, the searching time will be reduced to the time
of looking up the memory. With the increasing number
of stored paths(cases), the CBMT pathfinding algorithm
can reduce the price of A* obviously. However, there are
still some issues to be addressed. Firstly, the pre-stored
paths are manually selected so as to ensure that the paths
are representative (i.e., paths can cover the whole map).
The case selection method will not practical in large
maps. Secondly, since the cases are stored in a flat struc-

Yan Li, Sen Liang, Lanming Su, Jiacheng He

4

ture, searching for the most similar path will take up a lot
of time with increasing number of cases. This will deteri-
orate the efficiency of CBMT algorithm.
To address these problems, we propose a new multi-task
pathfinding algorithm based on CBR and kd-tree. Firstly,
we increase the number of pre-stored paths generated
randomly in large maps to cover the whole map as much
as possible. Since the new task will also be randomly
generated, if the cases cover larger region in the map, the
larger probability of the most similar cases can be suc-
cessfully found. Besides, in order to improve the quality
of stored paths, the threshold is set as half of the map’s
edge length. Only when the length of the randomly gen-
erated path is greater than or equal to the threshold, can it
be stored in the case base. Otherwise, we drop it and re-
generate a new path. After each CBR cycle, the success-
fully solved task will also be saved in the case base for
further use. With the continuous arrival of new tasks, the
number of the cases stored in the case base is also in-
creasing. Meanwhile, more comparisons are needed for
similarity computation, which is a time-consuming
process. Therefore, secondly, we change the original flat
structure of the case base to the kd-tree structure. The
speed of searching similar case can be improved greatly,
and then enhancing the efficiency of the algorithm. Addi-
tionally, kd-tree also support dynamic case base, in
which the cases are stored incrementally.

Figure 3. Flow Chart of the CBMT Pathfinding Algorit hm

Figure 4 shows the new proposed pathfinding method.
Here we firstly define three notations: Vstart, Vgoal and
pathi, where Vstart and Vgoal denote the start node and
the destination node of the new task, respectively; and
pathi is the ith path stored in the memory. The process
mainly consists of two phases: offline and online, which
is described as follows.
Offline phase: building a case base and stored it as a kd-
tree.

Online phase: this phase starts when a new task comes
which includes the following steps.

Figure 4. Flow Chart of the Improved Version of the

CBMT Pathfinding Algorithm

Using nearest neighbor search to query the most similar
case to the given task in the kd-tree.
Determine whether the retrieved case can be reused ac-
cording to the distance threshold.
Supposing pathi is one case stored in the kd-tree. It will
be considered reused and adapted to solve the new task
only when it is retrieved as the most similar case as well
as it meets the threshold condition.
Step 1 Calculate the Manhattan distance d1 between
Vstart and the start node of pathi and also calculate the
Manhattan distance d2 between Vgoal and the destina-
tion node of pathi.
Step 2 Compare the summation of d1 and d2 and the set
threshold. If the summation is greater than the threshold,
we consider that even the most similar case found in the
case base is not similar enough to solve the task. In this
case, A* will be still used for the pathfinding task. Oth-
erwise, we will reuse the selected pathi.
(3) Reuse and adapt the retrieved case.
Step 1. Use A* to search for a path from Vstart to the
start point of pathi.
Step 2. Use A* to search for the other path from Vgoal to
the goal point of pathi.
Step 3. Combine the found two paths together with pathi
to form a complete conncected path from the Vstart to
Vgoal. In other words, the new task is solved by our pro-
posed method.
Obviously, we only run A* in two small segments rather
than the whole path. The main part of the path is generat-
ed by reading from the cache rather than searching by A*.

Yan Li, Sen Liang, Lanming Su, Jiacheng He

5

Therefore, our method can avoid the deficiency of A* by
using the cases stored in the case base as a kd-tree. With
the increasing number of the stored paths, the available
information will be accumulated quickly and facilitate
the fast problem-solving. This method supports dynamic
and incremental data storage and fast NN searching. The
experimental results will demonstrate its potential advan-
tage in the reduction of the searching complexity.

4. Experimental Results

Our experiment is carried out in a map of 500×500 pix-
els. At the beginning, we store 200 randomly generated
paths as the case in advance. In order to guarantee the
quality of the generated paths, we require the length is
larger than the half of the map’s edge length. If the length
of the path generated randomly is greater than or equal to
the threshold, we save it to the case base. Otherwise, we
drop it and regenerate a new path. In addition, we take
account of the length of the new task. If the length of the
new task is too short, there is no need to implement
search process in this proposed method. A* algorithm
can meet the demand of the task with low price.
We test our improved version of CBMT pathfinding al-
gorithm by 100 new tasks. As we can see from Figure 6,
the average number of the expanded nodes of CBMT
pathfinding algorithm is 17482, however, the average
number of the expanded nodes of the improved version
of CBMT pathfinding algorithm is 8206. The average
searching time of CBMT pathfinding algorithm is 4.68
millisecond, and that of the improved version of CBMT
pathfinding algorithm is 2.96 millisecond. This shows the
improved version of CBMT pathfinding algorithm is
more efficient with a less space cost. In other word, using
the storage structure of kd-tree, the time of similarity
computation has been reduced obviously. Therefore, the
speed of searching the similar case can be improved
greatly, and then enhancing the efficiency of the algo-
rithm.

Figure 5. Comparisons of the Improved Algorithm with the

CBMT Pathfinding Algorithm

5. Conclusions and Future Work

In this paper, case-based reasoning and kd-tree are used
in multi-task pathfinding, which can reduce the search
space effectively. With the increasing number of the
stored paths (cases), most parts of the new task is no
longer to complete by A*, but by reusing the pre-stored
cases. Therefore, the proposed method can get the path
more easily and quickly. However, with the increasing
number of the cases, the space complexity will still in-
crease quickly. In the future work, we will further trim
the kd-tree so as to make sure all the cases in the case
base are representative.

Acknowledgements

This work is supported by NSFC (No. 61170040), the
natural science foundation of Hebei Province
(F2010000323; F2012201023), and the youth natural
science research plan foundation of Hebei University (No.
2010Q023).

References
[1] P. Hart, N. Nilsson, B. Raphael. A formal basis for the heuristic

determination of minimum cost paths, IEEE Transactions on
Systems Science and Cybernetics, 4(2): 100-107, 1968.

[2] A. Botea, M.Muller, and J. Schaeffer. Near optimal hierarchical
pathfinding, Journal of Game Development, 1(1): 7-28, 2004.

[3] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning A*,
Artificial Intelligence, 155(1-2): 93-146, 2004.

[4] Y. Lu, X. Huo and O. Asiotras, et al. Incremental multi-scale
search algorithm for dynamic path planning with low worst-case
complexity, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 99:1-15, 2011.

[5] V. Bulitko, Y. Bjornsson, R. Lawrence. Case-based subgoaling
in real-time heuristic search for video game pathfinding, Journal
of Artificial Intelligence Research 39, 269-300, 2010.

[6] A. Aamodt, E. Plaza. Case-based reasoning: Foundational Issues,
Methodological Variations, and System Approaches. AI
Communications. IOS Press, 7(1): 39-59, 1994.

[7] P. Cunningham. A taxonomy of similarity mechanisms for case-
based reasoning, IEEE Transactions on Knowledge and Data
Engineering, 21(11): 1532-1543, 2009.

[8] H. Li, J. Sun. Gaussian case-based reasoning for business failure
prediction with empirical data in China, Information Sciences,
179(1-2): 89-108, 2009.

[9] D. McSherry. Conversational case-based reasoning in medical
decision making, Artificial Intelligence in Medicine, 52(2): 59-66,
2011.

[10] Y. Du, W. Wen, F. Cao, and M. Ji. A case-based reasoning
approach for land use change prediction, Expert Systems with
Applications, 37(8): 5745-5750, 2010.

[11] Hastie, T., Tibshirani, R. Discriminant adaptive nearest neighbor
classification. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 18(6): 607-615, June 1996.

[12] Korf, R.E. Real-time heuristic search. Artificial Intelligence
42(2-3):189-211, 1990.

[13] Y. Li, L. Su, Q. He, Case-based multi-task pathfinding algorithm,
Proceedings of the 2012 International Conference on Machine
Learning and Cybernetics, Xi’an, 15-17July, 2012.

Yan Li, Sen Liang, Lanming Su, Jiacheng He

6

[14] Bentley, J.L. Multidimensional binary search trees used for
associative searching. Corn. of ACM, vol.18: 509-517, 1975.

[15] Moore, A. Efficient memory-based learning for robot control.
Ph.D. thesis, University of Cambridge, 1991.

[16] B. Li, H. Holstein. Using k-d trees for robust 3D point pattern
matching. In 4th International Conference on 3D Digital Imaging
and Modeling (3DIM 2003), 6-10 October 2003, Banff, Canada.
IEEE Computer Society, pages 95-102, 2003.

[17] D. Yao, J. He, and W. Liu. A real-time huge terrain visualization
algorithm based on kd-tree. Science Technology and Engineering.
12 (2): 338-341, 2012.

[18] Ge Zhao, Jun Zhang and Jiemin Hu. A modified satellite RCS
prediction method based on ray tracing combined with kd-tree
descriptions. Telecommunication Engineering. 52(5): 712-715,
2012.

