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Abstract: In this article, we propose  and analyze a new trust region algorithm for solving equality con-

strained optimization problems. We incorporate a non-monotone strategy into trust region algorithm to con-

struct a more relaxed trust region procedure and employ a differentiable exact penalty function. Under some 

reasonable conditions, the global convergence is established. 
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1. Introduction 

In this article, we consider the following equality con-

strained optimization problem 

min ( )

. . ( ) 0, 1,2, ,

nx R

i

f x

s t h x i m

Î

= = L
                 (1) 

where ( ) : nf x R R®  and 

( ) : ( 1,2, , )n

ih x R R i m? L  ( )m n£  are assumed to 

be continuously differentiable functions. 

Many authors have studied problem (1) (see[2,3,6,10- 

12]). These methods are monotonic algorithm. In 1982, 

Chamberlain in [1] proposed the watchdog technique for 

constrained optimization to overcome the Maratos effect. 

Inspired by this idea, Grippo, Lamparillo and Lucidi in-

troduced a nonmonotone line search technique for New-

ton’s method in [4].Their conclusions were overall ap-

proachable for the nonmonotone method, especially 

when applied to highly nonlinear problemsand in pres-

ence of narrow curved valley. 

The nonmonotone methods are distinguished by the fact 

that they do not enforce strict monotonicity to the objec-

tive function values at successive iterations. Some re-

searchers showed that utilizing non-monotone technique 

may improve both the possibility of finding the global 

optimum and the rate of convergence (see [13]). Due to 

the high efficiency of nonmonotone techniques, many 

authors are interested in working on employing nonmo-

notone strategies in various branches of optimization 

procedures (see [7,14]). 

Although the nonmonotone technique has many advan-

tages, it suffers from some drawbacks. Ahookhosh et al. 

introduced a modifiednonmonotone strategy and employs 

it in a trust region framework in [8]. Their analysis of the 

new algorithm showed that it inherited both stability of 

trust region methods and effectiveness of the nonmono-

tone strategy. 

In this paper we extend the nonmonotone technique [8] 

to trust region method for equality constrained optimiza-

tion problems. 

The rest of this paper is organized as follows: in Section 

2, we describe a new nonmonotone trust region algorithm. 

In Section 3, we prove that the proposed algorithm is 

globally convergent. Finally, some conclusions are ex-

pressed in Section 4. 

2. Algorithm 

Before describing the new algorithm, we introduce some 

notations:
1( ) ( ), ( ) ( ) ( ( ),g x f x A x h x h x= ? ? ?  

2 ( )h xÑ , ( )) n m

mh x R ´盐L . We define the matrix 

1( ) ( )( ( ) ( )) ( )

( ) ( )

T TP x I A x A x A x A x

I A x A x

-

+

= -

= -
        

(2) 

where ( )A x  has full column rank 

and ( ) ( ( )TA x A x+ = 1( )) ( )TA x A x- . 

We know that a point x  is called a stationary point of 

problem (1) if it satisfies the Kuhn-Tucker condition 

( ) ( ) ( ) 0h x P x g x+ =P P P P                   (3) 

Now we discuss our new nonmonotone trust region al-

gorithm for solving problem (1). At k th iteration, if kx  

does not satisfy the Kuhn-Tucker condition, we compute 

a trial step kd  by solving the following quadratic pro-

gramming subproblem [2] 

1
min

2

. .

n

T T

k k
d R

T

k k k

k

g d d B d

s t h A d

d

q

Î
+

+ ?

P P                         

(4) 

where kB  is an n n´  symmetric matrix which is the 

Hessian of the Lagrangian function at ( , )k kx l  or an 
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approximation to it, 0kD >  is a trust region radius, 
kq  

is any number which satisfies 

1 2

min min
k k

T T

k k k k k
d b d b

h A d h A dq
 

+ ＃ +
P P P P

P P P P
       

(5) 

and where 
1b  and 

2b  are two given constants that satisfy 

2 10 1b b＃ < . 

For testing whether the point 
k kx d+  is accepted as the 

next iteration, we use the augmented Lagrangian merit 

function 
2( , , ) ( ) ( ) ( ) ( )Tx f x x h x h xl s l sF = + + P P

         
(6) 

where ( )xl  satisfies 

2min ( ) ( )
mR

g x A x
l

l
Î

-P P
                        

(7) 

and 0s >  is the penalty parameter. 

Now, we define 

( ) (1 )k k l k k kR h h= F + - F
                   

 (8) 

where 

( )
0 ( )
max { ( , , )}l k k j k j k j

j m k
x l s- - -

＃
F = F  

and 0 ( ) min{ ( 1) 1, }, (0) 0, 0,0m k m k N m N＃ - + = >

min max 1h h＃ ? and
min max[ , ]kh h hÎ . 

The actual reduction is 

( , ( ), )k k k k k k kAred R x d x dl s= - F + +  

2 2

1
( )

2

( ( ) ) ( )

( )

T T

k k k k k k k k

T T

k k k k k k

T

k k k k k

Pred g A d d B d

x d h A d

h h A d

l

l l

s

= - + -

- + - +

+ - +P P P P

       (9) 

Therefore, the ratio is calculated 

( , ( ), )k k k k k k

k

k

R x d x d

Pred

l s
r

- F + +
=  

Now, we can outline our new nonmonotone trust region 

algorithm. 

Algorithm 1 

Step 1 Given 

0 0 0 1, , 0, 0,0n n nx R B R e m´挝 D > ? ?

2 1 2 min ax 0m1,0 1,0 1 ,, , 00Nm g g h sh< < ? ＃ >< >

2 10,0 1b bh > < ? . Set 0,k = (0) 0.m =  

Step 2If k k kh P g e+ ?P P P P , stop. 

Step 3 Solve the subproblem (4) to determine kd . If 

0kd = , then stop; otherwise, calculate r kP ed . If 

2 2r ( )
2

Tk

k k k k kP ed h h A d
s

? +P P P P
       

 (10) 

does not hold, set 

2 2

1
2[( )

2

( ( ) ) ( )] /

( )

T T

k k k k k k k k

T T

k k k k k k

T

k k k k

g A d d B d

x d h A d

h h A d

s l

l l

h

= + + +

+ - +

- + +P P P P
          

(11) 

which ensures that the new value of expression (11) sa-

tisfies condition (10). 

Step 4 Compute , rk kAred P ed and 
kr . If 

1kr m³ , then 

set 
1k k kx x d+ = + . 

Step 5 Set 

2

1 2 1 2

1 2

[ , ), ;

[ , ), ;

[ , ), .

k k

k k k k

k k k

if

if

if

r m

g m r m

g g r m

+

ìï D D ?ïïïD 蜠 D ＃í
ïïï D D <ïî      

(12) 

Step 6 Update the matrix 
kB  to generate 

1kB +
. 

Set
1ks +

, 1k k ks= = +  and return to Step 2. 

3. Convergence Analysis 

In this paper, we consider the following assumptions 

that will be used to analyze the convergence properties 

of the new algorithm. 

Assumptions 

(H1) There exists a convex set  nRW?  such that 

,kx k kx d+ 蜽  for all k . 

(H2) f and 2 ( ), 1,2, ,ih C i m蜽 = L . 

(H3) The matrix ( ) ( )A x h x= ?  has full column rank for 

all x蜽 . 

(H4) 2 1( ), ( ), ( ), ( ), ( ),( ( ) ( ))Tf x h x A x f x f x A x A x -蜒 and 

each 2 ( ), 1,2, ,ih x i m? L  are all uniformly bounded in 

norm in W. 

(H5) The matrices { , 1,2, }kB k = L  have a uniform up-

per bound, i.e. there exist 
1 0b >  such that 

1kB b£P P  for 

all k NÎ . 

In what follows, we introduce some basic Lemmas 

which play important role in the analysis of our new 

algorithm. 

Lemma 1.Under the assumptions, there exists a positive 

constant 2b  such that 

2 2 2min ,T k

k k k k k

k

b
h h A d h

A+

禳镲 D镲- + ? 睚
镲镲铪

P P P P P P
P P

     

 (13) 

21
r min ,

2

k

k k k k

k

b
P ed h h

A
s

+

禳镲 D镲³ 睚
镲镲铪

P P P P
P P

.          (14) 

Proof. The inequality (13) can be found from Lemma 

3.3 in [2]. The second result of the lemma is similar to 

Lemma 1 in [5]. 

Lemma 2.If Algorithm 1 does not terminate, then 

2

1
( )

2

1 1
min ,

4 2

T T

k k k k k k k

k

k k k k k

k k k

g A d d B d

P g B d d
B P g

l+ +

禳镲 D镲? +睚
镲镲铪

P P P PP PP P
P P P P

 

holds for all k , where  
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1( ) ( )( ( ) ( )) ( )T T

k k k k k kP P x I A x A x A x A x-= = -
     

(15) 

( )k k kd I P d= -                        (16) 

k k k kg g B d= +                             (17) 
1
22 2( )k k kdD = D - P P
                         

(18) 

Proof. The proof is similar to Lemma 3 in [5], we omit 

it for convenience. 

Lemma 3. Under Assumption, if Algorithm 1 does not 

terminate, there exists a positive constant 1m  such that 

the inequality 

2

2

1

2

2

Pr ( )
2

1
min

1
,

4

,m
2

in

2

k

k k k

k k

k k k

Tk

k k

k

k

k k k

k

k

B

ed h h A d

P g
P g

b
m d h h h

A

s

s
+

禳镲 D镲睚
镲镲铪

禳镲 D镲- + 睚
镲镲î

³

þ

- - +P P P P

P P
P P P P

P PP P P P P P
P P

 

hold for all k . 

Proof. Using Lemma 1, 2 and (9), we obtain 

 

2 2

2

2 1
,

2

( (

Pr ( )
2

1
min

4

mi

)

)
2

n

)

( ,

k

k k k

T

k

Tk

k k k k

k k k k k

T k k

k k k

k

k

k

k

k

k

B P g

B d d x d

b
h A d h h

A

ed h h A d

P g

l l

s

s

+

禳镲 D镲睚
镲镲铪

- - + -

禳镲 D镲+ + 睚
镲ï

-

³

ïî

- +

þ

P P P P

P PP PP P

P P P P

P P

P

P P

P

P P

          

(19) 

According to Lemma 1, (15) and (16) 

( ) ( )

2

k k k k

T T

k k k k k

k k

d A A d

A h A d h

A h

+

+

+

£

= + -

£

P P P P

P P

P PP P

              (20) 

By Assumptions and (7), there exists a positive constant 

2m  such that the inequality 

2( )k k k kx d m dl l+ - ?P P P P
               

(21) 

holds for all k . Hence, from Lemma1, (19), (20) and 

(21), we have 

2 2

2

2

2

Pr ( )
2

1
min

4

mi

1
,

2

2

,
2

n

Tk

k k k k k

k

k

k k k

k k

k

k k k k

k k

k k

k

B P

ed h h A d

P g
g

A B d h m d h

b
h h

A

s

s

+

+

禳镲 D镲睚
镲镲

- - +

³

铪

- -

禳镲 D镲+ 睚
镲镲铪

P P P P

P P P P

P PP PP PP P P PP P

P P
P

P

P
P

P

P

 

Therefore, under assumptions, there exists 1 0m >  such 

that the result of Lemma 3 is true. 

Lemma 4.Under Assumptions, there exist positive con-

stants 3m and 4m , such that, on the iterations that satisfy 

the condition 

3k kh mP P                               (22) 

we have 

2 2

4Pr ( )
2

Tk

k k k k k ked h h A d m
s

- - + 矰P P P P
      

(23) 

Proof. The proof is similar to Lemma 5 in [5]. 

Lemma 5.Under the assumptions, there exists a positive 

constant 5m  such that 

2

1 5rk k k kP ed m d+F - F - ?P P P P .           (24) 

Proof. Using (6), (9) and Taylor expansion, we have 

1

1 1

2 2

1 1 1

2

1

2

2 1

2 2

2

2

2

2

r

1
| ( )

2

|

1
| ( ( )) |

2

1
| ( ( ) ) |

2

( ( )

( )

1

4

k k k

T T T T

k k k k k k k k k k k

T T

k k k k k k

T

k k k k k

T

k k k k k

k k k k

k k k k

P ed

f g d d B d f h A d

h h A d h

d B f x d d

d h x d d

d h x d h

h x d A d

h

l

l s s

x

x l

s x

x

+

+ +

+ + +

+

F - F -

= + + - + +

- + + -

? ?

+ ?

+ ?

+ ?

+ ?

P P

P P P P

P P P PP P

P PP PP P

P 2 2

2( ) )k k kx d dx+ P P P

 

where 1 2, (0,1)x x Î . 

By Assumptions, there exists a positive constant 5m  

such that 
2

1 5r .k k k kP ed m d+F - F - ?P P P P  

Lemma 6.(See Lemma 5 in [9])Under the assumptions, 

if 0k k kP g h+ ?P P P P , then there exists a integer 0k  and 

a positive constant s  such that for all 0 , kk k s s? . 

Lemma 7.Under the assumptions and there exists an 

infinite set N , we have 

( ) 1lim lim liml k k k
k N k N k N

k k k

R+
挝 ?
  

F = F = . 

Proof.Using definition of kR and ( )l kF , we observe that 

( )

( ) ( ) ( )

(1 )

(1 ) .

k k l k k k

k l k k l k l k

R h h

h h

= F + - F

 + - F = F
 

And from the definition of ( )l kF , we have ( )k l kF  , 

for any k NÎ . Hence 

( )

(1 )

(1 ) .

k k k k k

k l k k k kR

h h

h h

F = F + - F

 + - F =
 

Then we have 

( ) .k k l kRF ＃ F  
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This fact, along with Lemma 4.7 in [7], leads us to have 

the conclusion. 

Theorem 1.Under the assumptions. If Algorithm 1 fails 

to satisfy the termination condition, then 

lim 0k
k

h


=P P                             (25) 

Proof. We prove it by contradiction. Assume that (25) is 

not true, that is, there exists a constant 0h >  such that  

, .kh h k> "P P                            (26) 

It follows from Lemma 1 and Step 4 that 

 

1 2

1 min ,
2

k k

k k k k

k

b
R h h

A

ms
+ +

禳镲 D镲- F ? 睚
镲镲铪

P P P P
P P

      

(27) 

If 3k kh mP P , by Lemma 4 and (27) , we have 

1 1 4k k kR mm+- F 矰 .                     (28) 

Otherwise, (27) implies that 

2 21

1 3
2

k

k k kR m
ms

+- F 矰                      (29) 

Hence (28) and (29) imply 

2 21

1 1 4 3min{ , },
2

k

k k k kR m m k
ms

m+- F 矰 D "
     

(30) 

Using Lemma 7 and (30), we obtain 

lim 0, lim 0k k
k k

d
 

D = =P P                   (31) 

without loss of generality, it is assumed by  

2

,k

A
h k

b
D ?

                             

 (32) 

By (26), (31) ,(32), Lemma 3 and Lemma 5, we can de-

duce 1k k+D 矰  for all k  sufficiently large, which is in 

contradiction with (31). Therefore, (25) holds for all k . 

Theorem 2.(See Theorem 3.9 in [2])Under theassumpti- 

ons, Algorithm 1 produces iterates { }kx , which satisfy 

lim inf( ) 0k k k
k

h P g


+ =P P P P . 

4. Conclusions 

In this paper, we propose a new non-monotone trust re-

gion algorithm for solving equality constrained optimiza-

tion problems. After we analyzed the properties of the 

new algorithm, the global convergence theory is proved. 

We believe that there is considerable scope for modifying 

and adapting the basic ideas introduced in this paper. In 

the near future, we would like to combine the new algo-

rithm with line search algorithm in order to sufficiently 

use the information which the algorithm has already de-

rived. 
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