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1. Introduction 

In this paper, we limit our discussion to the uncon-

strained optimization problem 

                           min ( ), ,
n

f x x RÎ                            (1) 

where the objective function ( )f x  is a smooth function of 

several variables and its derivatives are unavailable or 

unreliable. This class of problems exists widely in prac-

tice and is called as the derivative-free optimization prob-

lems. For example, the function evaluations are the out-

comes of a so-called black box or the simulation results 

of computer program. All the situations above reduce to 

an impossible mission to compute the relative derivatives 

of the function. The Hooke-Jeeves method [1] in 1961 

and the Nelder-Mead method [2] in 1968 are the early 

literatures of pattern search methods which can deal with 

this situation. In 1969 and 1973, Winfield [3] put forward 

the first model-based method for derivative-free optimi-

zation. From then on, many researchers investigated such 

problem and contributed rich results on derivative-free 

methods. In 2002, Marazzi and Nocedal [11] proposed 

the genius idea of constructing linear or quadratic model 

within the wedge trust region. By introducing a "taboo 

region", their method succeeded figure out the problem 

in persisting the geometry of the interpolation sets.  

Considering the effectiveness of nonmonotone strategy 

when coping with the problems which have strong non-

quadratic qualities, we proposed a hybrid algorithm 

which combines nonmonotone strategy with wedge trust 

region methods in this paper.     

Totally, this paper is organized as follows. In section 2 

we first introduce some preliminaries about interpolation 

schemes, then design the new self-correcting geometry 

strategy and propose our nonmonotone wedge trust re-

gion algorithm with self-correcting geometry. In section 

3, we prove the global convergence of our algorithm and 

some conclusions are made in section 4. 

2. A Non-monotone Wedge Trust Region 

Method with Self-correcting Geometry for 

Derivative-free Optimization 

2.1. Interpolation models 

There are several different methods to construct the in-

terpolation model, such as Lagrange interpolation [4, 5], 

Newton interpolation, and radial basis function interpo-

lation [6]. 

Let us consider dpn , the space of polynomials of de-

gree d in nR , and let 11p p  be the dimension of the 

space. One knows that for 1, 11d p n    and for 

2, (n 1)(n 2)/21d p    .  

A basis  ( ), ( ), , ( )0 1x px x    of dpn  is a set of 1p  

polynomials of degree d  that span dpn . For any such 

basis  , any polynomial ( ) pm x d
n  can be written as 

( ) ( )

0

p
m j jx x

j

  


, where , ,0 p   are real coefficients. 

We say that the polynomial ( )m x  interpolates the func-

tion ( )f x  at a given point if ( ) ( )m y f y . 

We give a set  0 1, , , p nY y y y R   of the interpolation 

points. Let ( )m x  denote a polynomial of degree d  in 

nR  that interpolates a given function ( )f x  at the points 

in Y . The , , ,0 1 P    can then be determined by solv-

ing the linear system 

( ,Y) (Y)M f  , where 
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Obviously, the necessary and sufficient conditions 

which can make the above system to have a unique solu-

tion are that the matrix ( ,Y)M   has to be nonsingular. 

Definition 2.1. [7] The  0 1, , , p nY y y y R 
 
is poised 

for polynomial interpolation in nR  if the corresponding 

matrix ( ,Y)M  is nonsingular for some basis   in dpn . 

Definition 2.2. [7, 8] Given a set of interpolation 

 0 1, , , p nY y y y R  , a basis of 11p p   polynomials 

( )(j 0, ,p) pdl j x n   is called a basis of Lagrange polyno-

mials if 

1,i j,
(y )

0, .

il j ij
i j




 


 

If Y  is poised, then Lagrange polynomials exist and are 

unique. Moreover, they have a lot of useful properties. 

Particularly, we are interested in the crucial fact that, if 

( )m x  interpolates ( )f x  at the points in Y , then for all 

x  , 

( ) (y ) ( ).

0

p
jm f l x

j

x j 


   

              (2)  

It can also be shown that ( ) 1,

0

.nx x
p

l j
j

R 



   

Definition 2.3. [7] Let 0  and a set nR . Let 


 be 

the natural of monomials of dpn . A poised set 

 0 1, , , pY y y y   is said to be  -poised in  if and only 

if for the basis of Lagrange polynomials associated 

withY . One has that max max ( )
0

l xi
i p x


  

. 

Lemma 2.1. Give a  ( , ) nx y R y x


      , a poised 

interpolation ( , )Y x  , and its associated basis of La-

grange polynomials  (y)
0

p
l j j

, there exist constants 

0kef  and 0keg  such that, for any interpolating poly-

nomial ( )m x  of degree one or higher of the form (2) and 

any given point ( , )Y x  , we have [9] 

2
(y) m(y) (y)

0

p
if k y y lef j

j

  


 and 

(y) m(y) , max max ( ) .
0, , ( , )

f k l xeg j
j p x x

    
    

Lemma 2.2. [9] Given a closed bounded domain  , any 

initial interpolation set Y , and a constant 1 . Con-

sider the procedure: find  0, ,j p   and a point x  

such that ( )l x  , and replace 
jy
 
by x  to obtain a new 

set Y . Then this procedure terminates after a finite num-

ber of iterations with a model which is  -poised in  . 

2.2. Nonmonotone wedge trust region methods 

In general, the model is quadratic in trust region frame-

work, written as 

   
1

2

. .
,

T T
m x s f x g s s G sk kk k k

s t s
k

   

 

,        (3) 

where ( ) G , ( ) ,s gm s qx xk k kkmk k k     2( ) G ,xkmk k   

and k  is the trust-region radius at k-th iteration. Gk  
is 

a symmetric approximation to 2 ( )f xk . In a derivative-

free case, 2G ( ),fk xk  

( ).g fk xk  In addition, (y)mk  
satisfies the follow 

interpolation condition (y) (y), y Ym fk k   . 

The wedge trust region method was deliberately dis-

cussed by Marazzi [10] and introduced the main idea in 

Marazzi & Nocedal [11]. The wedge constraint is added 

to the trust region subproblem, and we have 

                             min ( s)mk
s

xk                                     (4) 

                            . .s t s k                                       (5) 

                                s Wk ,                                       (6) 

Where Wk  is a set which contains the “taboo region” 

area, and the purpose is to avoid the new point falling 

into it. As for solving the wedge trust region subproblem 

(4)-(6), we usually first solve the standard trust region 

sub-problem without the wedge constraint and get a so-

lution  es
k

 at the k-th iteration. If es
k

 satisfies the wedge 

constraint, we set es sk k
 as the trail step. Otherwise, the 

wedge constraint is active. By rotating ks , we find a vec-

tor satisfying the wedge constraint. Then we set the trail 

point x x sk kk
  . 

Recently, nonmonotone techniques are widely used in 

the trust region methods. Due to the high efficiency of 

nonmonotone techniques, many researchers are interest-
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ed in working on the nonmonotone techniques for solv-

ing optimization problems. With the continuous devel-

opment of nonmonotone technique, Li and Deng [12] 

introduced another nonmonotone method, and they de-

fine 

                ( )

( ) ( )

D fk
rk

m

x
k

x x
kk k

mk

 







                                     (7) 

  
( ) 1

(1 ) ( ) 21

f x kk
Dk

D f x kk k k kh h

ì =ïï= í
ï + - ?-ïî

              (8) 

And the 
( )

( ) D 1

x

x

f k
k

f k k
 

 
. This paper applied the Dk   to 

the trust region with self-correcting geometry method.    

Algorithm2.1. A new Nonmonotone Self-correcting 

Geometry Process 

Step 0. Initialization 

The current iterate xk , the current interpolation set Yk , 

the current trust region radius 0k  , the ratio rk


, the 

switch value c  for updating radius and the trial point 

x
k
  are given, and the 0,0 12 1       and 0,1  are 

also given. 

Step 1. Successful Iteration 

If rk 

 , then define 1x xk k

 , 1 1k k   , and 

   \1Y Y x yk k k
  , arg maxy y x

k
y Yk

  


. 

Step 2. Replace the Comparatively bad Interpolation 

Points 

If rk 

 , the  j jy Y y xk k k k


       is nonempty 

and the  ( )jy Y l xk k j k


    is nonempty, 

then 1x xk k
  and    \1Y Y x yk k k

  , 

Where   is an index of any point in k k  , for in-

stance, the 
2

arg max ( ) .jy y x l xk j kjy k k

  

 

if k c  , 

set 1 2k k   ; else set 1k k  . 

Step 3. Replace the Distant Interpolation Points 

If rk 

 , k   and k   , then set 1x xk k  and 

   \1Y Y x yk k k
  , where  is an index of any point 

in k , for instance, arg max jy y xk
jy k

 



. If k c  , 

set 1 2k k   ; else set 1k k  . 

Step 4. Replace the Badly-poised Interpolation Points 

If ,rk 

 k    and k   , then set 1x xk k  and 

   \1Y Y x yk k k
  , where   is an index of any point 

in k , for instance, arg max ( ) .y l xj kjy k

 



 If k c  , 

set 1 2k k   ; else set 1k k  . 

Step 5. Unchange the Interpolation Set 

If rk 

 , k k    , then set 1x xk k  and 1 2k k   . 

Now we state our new algorithm as follows. 

Algorithm 2.2. A New Nonmonotone Wedge Trust 

Region Method with Self-correcting Geometry 

Step 0. Initialization         

Given an initial point 0x , an radius (0, )0   , an ini-

tial tolerance 0 , an initial interpolation set 0Y
 
such that 

0Y is poised and the initial interpolation model function 

( )0m x  corresponding to 0Y . Constants 

   0,1 , 0,1 , 0,0 12 1           and   1, 0. .0 k v xk     

Step 1. Criticality Test 

Step1a: Set 0i  and .m mi k


   

Step1b: If ( ) ,m xi k i


   set ( )1 m xii k 


  , compute 

a  -poised model 1mi



 in ( , )1xk i  , set : 1i i  , and 

return to step 1b. 

Step 1c: Set m mi k


 , ( ) ,1 m xk k k   and set xi k   if 

a new model has been computed. 

Step 2. Compute the Replaced Point 

Choose the point that is the farthest from the current 

iterate as the replaced point , . .,y i e   

arg max .y y xk
y Yk

  


 

Step 3. Solve the Wedge Trust Region Subproblem 
Solve the wedge trust region subproblem (4)-(6) for get-

ting ks , and set the trial point x x sk kk


   . 

Step 4. Update the Iteration and Interpolation Set 

Compute 
( )

( ) ( )

D f xk k
k

m x m xk k k k







  Use algorithm 2.1 to get 

11
, kY

k
x 

 and .1k    

Step 5. Update the Model and Lagrange Polynomials 

If 1Y Yk k , recompute the interpolation model ( )1m xk  

using the Lagrange polynomial for every associated with 

1Yk . Set 1k k  , go to Step 1. 

3. Global Convergence 
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In this section, we discuss the global convergence of the 

new algorithm, and the convergence analysis is based on 

the convergence theory of basic trust region methods in 

[14], and it is an extension of the convergence analysis 

of algorithm WEDGE [11]. We first give some assump-

tions [13]. 

(A1) the objective function f  is continuously differenti-

able in an open set   containing all iterates generated 

by the algorithm and its gradient f is Lipschitz conti-

nuous in   with constant L . 

(A2) there exists a constant  kl o w 
such that ( ) kf x low  

for every .x  

(A3) there exists a constant k LH  such that G kk H  for 

every 0.k  

Lemma 3.1. (see Lemma 6.1.3 in [16] and [13]) At the 

k-th iteration, the solution of the wedge trust region sub-

problem satisfies the fraction of Cauchy decrease condi-

tion: 

        

( ) ( ) min ,
gkm x m x k gk k k c k kk Gk

    
 

,           (9) 

where (0,1)k   is a constant. 

Lemma 3.2. (see [13]) Suppose that assumptions A1 

and A3 hold, that the model is quadratic for all k  suffi-

ciently large and that there is a finite number of success-

ful iterations. Then  

                          lim inf 0.gk
k




                            (10) 

Lemma 3.3. (see Lemma 5.2 in [9]) Suppose that as-

sumptions A1 and A3 hold and that mk  
is a quadratic 

model. Then, for any constant 1 , if the k-th iteration 

is unsuccessful, k  
 
and  

(1 )k1
min , ,

22 ( 1) (p 1)

c g k gk k kk kH ef





 
 

    
  
 

  then k   . 

Lemma 3.4. Suppose that assumptions A1 and A3 hold. 

Suppose also that, for some 0ko  and all k ko , the 

model is quadratic and  

                                 g kk g                                   (11) 

for some 0kg  . The there exists a constant 0k   

such that, for all 0k k ,  

                                    kk   .                                 (12) 

Proof. Assume that, for some 0k ,  

min( , , )k k kk g g c                        (13) 

If the k-th iteration is successful, i.e., rk 

 , then 

1k k  . Otherwise, rk 

 , then there are three cases 

that may occur. 

  The first case is when k    and k   , step2 of 

algorithm 2.1 is executed. Observe that (13) ensure 

k c  , therefore 1k k  . 

  The second case is when k  
 
and k   . If 0i , 

then (11) and (13) ensure that  

               gk k ii
    ,                                (14) 

Where ki  is the index of the last iteration before k  

where a new  -poised model has been recomputed in 

the criticality test. Therefore, step 3 of Algorithm 2.1 is 

executed. Together with k c  , we  have 1k k  . 

  The third case is conducted when k   . Under the 

condition (13), Lemma 3.3 can infer the k   . Since 

(13) and (14) hold in this case, step 4 of Algorithm 2.1 is 

executed and 1k k  . 

As the consequence, the trust region radius can be 

decreased only if  min( , , )k k kk g g c   , and algorithm 

2.1 implies  (12) with 

min , min( , , )0 1k k k kg g c      
. 

Lemma 3.5. Suppose that assumptions A1-A3 hold, the 

model is quadratic for all k sufficiently large and the 

number of successful iterations is infinite. Then the (10) 

also holds. 

Proof. Assume that the lemma is not true, i.e., there ex-

ists some 0kg   such that (11) holds for all sufficiently 

large k. then we have from Lemma 3.4 that (12) holds 

for all k, including all successful iterations with k large 

enough. However from (9), we have that  

                         

                          

            

( ) ( ( ) ( ))

min

  

,

min

       0

,

 

D f x m x m x
k k k k k k

gkk gc k k
Gk

kg
k k kc g

kH

k
d


 

  

 
 
 





 
 
 






. 

Since, by assumption, there are infinitely successful ite-

rations. We obtain that  

lim ( ) ( )
0

1,
f f kd

k i
x x
k

i S


  

  
, 

which contradicts assumption A2, where S is a set of 

successful iterations. Therefore the lemma holds. 

Lemma 3.6. [14, 9] Suppose that assumptions A1 and 

A3 hold, then 

         2( ) ( ) ( ) gf m fx x x kk k k H kkk k
           (15) 

Lemma 3.7. Suppose that A1 and A3 hold, that 0kg  , 

that  
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1
( ) g (1 )

2
f k gk cx kk     ,                   (16) 

and that     

                            

(1 )
2

kc gk k
kH

   .                         (17) 

Then iteration k is successful. 

Proof (see theorem8.4.3, p. 286, in Conn, Gould, and 

Toint [15]) Observe first that A3, (17) and (9) imply that  

     

( ) ( ) mi

               

n ,

       

gkm m k gk kk k c kH

k

x

g

x

k

k k

c k

 
   

 

 



. 

Hence, successively using (7), this last inequality, (15) 

(16) and (17), we obtain that 

( ) ( ) ( )

( ) (

       

) ( ) ( )

( ) ( )
1

( ) ( )

(
        

) g
1

D f f fk
rk

m m m mk k k k

f mk
rk

m mk k

f kk H

x x xkk k

x x x x
k k k

k

k g k gc k

k

x x
k k

x x
k k

xk

c k


 

 



  
 

 

 
  







  
   

 

Thus we have that rk 

 , and iteration k  is successful. 

Theorem 3.8. Suppose that assumptions A1-A3 hold and 

that the model is quadratic for all k sufficiently large, 

then   ( )   0l  im inf xkf
k

 


. 

4. Conclusions  

In this paper, we consider a nonmonotone wedge trust 

region method with self-correcting geometry for deriva-

tive-free optimization. We analyzed the properties of the 

new algorithm and proved the global convergence 

theory under some mild conditions. In the near future, 

we would like to design and check the effectiveness of 

different nonmonotone strategy for unconstrained opti-

mization problems. 
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