Structural Optimization Analysis of Permanent Magnet Synchronous Motor based on Taguchi Method

He LU

Chongqing Jiaotong University, Chongqing, 400074, China

Abstract: In the finite element simulation platform Maxwell, a two-dimensional model of the motor is established. The harmonic content of the two air-gap magnetic field waveforms is compared and analyzed. Finally, the rotor of the built-in "V" _type permanent magnet synchronous drive motor.

Keywords: Electric vehicles; Permanent magnet synchronous motor; Structure optimization

基于田口法的永磁同步电机结构优化分析

卢贺

重庆交通大学,重庆,中国,400074

摘 要: 在有限元仿真平台 Maxwell 中建立电机二维模型,对比分析了两款电机的气隙磁场波形的谐 波含量,最后借助田口正交实验法对内置式"V"_type 永磁同步驱动电机的转子磁路结构进行多目标的 参数优化。

关键词: 电动汽车; 永磁同步电机; 结构优化

1 引言

驱动电机作为纯电动汽车的核心部件,开发设计 更高效、节能、先进的驱动电机对纯电动汽车的发展 和普及有着推波助澜的作用。高效的驱动电机与先进 的电驱动技术一方面可以提升能量转化效率,另一方 面也可以在一定程度上能够弥补目前动力电池单次充 电续驶里程短的短板。永磁同步驱动电机在纯电动汽 车装机量的占有率保持绝对的优势,特别在高性能永 磁材料的应用,新型控制理论的提出,高性能处理器 和电力电子器件等的出现的基础上,进一步提高了永 磁驱动电机功率密度、转矩密度和运行效率,电机结 构呈现微小型,电机材料向轻量化方向发展^{[8]-[7]}。

在设计纯电动汽车驱动电机时,在确定驱动电机 的主要尺寸参数之后,依据汽车行驶工况的复杂性, 综合考虑各种磁路结构的优劣势,选择合适的转子磁 极结构,其选择原则如下:

(1)首先依据主要参数设计时预估的磁负荷的 取值范围确定永磁材料的选型,为了防止永磁体产生 不可逆退磁,要求对永磁体的最大去磁工作点进行校 核,最大退磁点要求高于回复线拐点,并尽量留有充 分的余地。

(2) 要保证电机性能,必须有足够的永磁体放

置空间来保证一定的气隙磁通密度。每极永磁体的宽度越大,聚磁效果越明显,气隙磁通密度越高^{[6][5]}。

(3)要有足够的机械强度和简单有效的隔磁措施。为了降低永磁体漏磁必须采取相应的隔磁措施。但隔磁桥的布置会使转子结构变得复杂,机械强度变差,因此要尽量选用简单的隔磁措施来达到要求的隔磁效果。

2 结构分析

目前在纯电动汽车领域应用较多的永磁同步驱动 电机转子磁路结构主要有内置径向"一"_type 和 "V"_type 转子磁路结构,这两种结构的永磁同步 电机具有较高的功率密度和良好的弱磁调速性能。本 文将对这两种转子磁路结构的电磁性能进行对比分 析。

由 Maxwell 仿真平台计算出的电机模型的电磁性 能如下表 1 所示,为了便于陈述,将前面提出的 "V"_Type 驱动电机和"一"_Type 驱动电机分别 命名为"电机模型 A"和"电机模型 B"。

表 1. 永磁同步电机电磁性能参数

性能参数	电机 A	电机 B
空载气隙磁密峰值(T)	0.65	0.69

HK.NCCP

空载齿部磁密峰值(T)	1.3	1.58
空载轭部磁密峰值(T)	1.43	1.45
电流密度(A/mm2)	3.84	1.9
线负荷(A/mm)	41.4	29.8

本文选用 48/8 这种常用的槽极配合来分析 "V" _Type 和 "一"_type 转子磁路结构驱动电机的电磁 性能。

a、 "v" _type

2.1 空载气隙磁场分布对比分析

驱动电机的机电能量转换是通过气隙进行的,气 隙磁通密度的分布对电机性能有着很大的影响^[1]。理 想状态下,永磁同步驱动电机是通过正弦分布的绕组 电流和正弦分布的气隙磁通密度相互作用进行的。对 于一般的永磁同步电机来说,其绕组电流的正弦度 是可以保证的,但由于内置式转子磁路结构的永磁同 步驱动电机受到电机本身的磁路结构特点的限制,气 隙磁通密度波形并不是理想正弦波分布,一般呈梯形 波分布,因此对气隙磁通密度的正弦度和谐波含量的 分析是必要的^[4]。

在不考虑电枢绕组和定子槽的影响时,永磁体产 生的径向气隙磁通密度的表达式为^[3]

$$\boldsymbol{B}_{m} = \sum_{\boldsymbol{k}}^{135\text{L}} \boldsymbol{B}_{m\boldsymbol{k}} \cos \left[\boldsymbol{k} \boldsymbol{p} (\boldsymbol{w} \boldsymbol{t} - \boldsymbol{q}) \right] \boldsymbol{k} = 1,3,5\text{L} \quad (1)$$

式中, p为磁极对数; W, 为电机旋转角速度。

当考虑定子槽的影响时,一般认为径向气隙磁密 是不考虑电枢绕组和定子槽时的气隙磁密与气隙相对 磁导的乘积。其中相对气隙磁导为

$$\Lambda = \sum_{\mathbf{k}}^{\mathbf{0},\mathbf{1},\mathbf{2}\mathbf{L}} \Lambda_{\mathbf{k}\mathbf{2}} \cos(\mathbf{k}_{\mathbf{k}}\mathbf{0}q) \mathbf{k}_{\mathbf{2}} = \mathbf{0},\mathbf{1},\mathbf{2}\mathbf{L} \qquad (2)$$

式中,Q表示电机槽数。

$$\boldsymbol{B}_{m} = \sum_{\boldsymbol{k}_{1}}^{13,5L,0,1,2L} \sum_{\boldsymbol{k}_{2}}^{2L} \boldsymbol{B}_{m\boldsymbol{k}_{1}\boldsymbol{k}_{2}} \cos\left[\boldsymbol{k}_{1}\boldsymbol{p}\boldsymbol{w}_{r}\boldsymbol{t} - \left(\boldsymbol{k}_{1}\boldsymbol{p} \pm \boldsymbol{k}_{2}\boldsymbol{Q}\right)\boldsymbol{q}\right] \quad (3)$$

因此气隙磁通密度的频率和空间分布次数可以表 示为

$$\begin{bmatrix} k_{\mu}pf, -k_{\mu}p \pm k_{\mu}Q \end{bmatrix}, k_{\mu} = 1,3,5L, k_{\mu} = 0,1,2L(4)$$

式中,f为电机机械频率, $f = \frac{w_r}{2n}$ 。

分析所设计的驱动电机模型以额定转速工作,在 5ms时转子转至 93.75deg,空载气隙磁力线和磁场强 度分布云图如下图 2 和图 3 所示。

a、电机模型 A

HK.NCCP

b、电机模型 B 图 2. 电机磁力线分布

a、电机模型 A

b、电机模型 B 图 3. 电机磁通密度云图

分析以上不同转子磁路结构的电机模型,对整个 模型区域进行求解,通过软件后处理分别得到电机模 型磁力线分布云图(图 2)和磁通密度云图(图 3),从两种类型的磁场分布云图中可以看出转子隔 磁磁桥部位达到饱和并有效的限制了永磁体漏磁,并 且电机内部磁路没有出现饱和现象,这样更有利电机 弱磁扩速和转矩输出。

分析定子齿、轭部磁通密度,设计时既要避免定 子齿、轭部的磁密过度饱和,还要尽量提高硅钢材料 的利用率。定子齿、轭部磁密过度饱和将会导致铁心 损耗增大,降低了电机的高效区。

3基于田口法结构优化

基于以上对电机模型 A 和电机模型 B 的空载气 隙磁通密度谐波和齿槽转矩的分析得知,电机模型 A 三次谐波最高,齿槽转矩峰值较大,其转子结构优化 空间较大。本节利用田口法数组表对电机模型 A 的 四个转子结构因素进行优化设计。田口法作为许多优 化方法之一,相比于其他方法如遗传算法, Rosenbrock 函数优化法,响应面法等,田口法在工程 实践中应用更广。

3.1 实验设计

田口法是通过在所有实验中选择有代表性的点组 成试验阵列来建立正交数据表。首先确定要优化的转 子结构参数,本文选择下图 4 中所标记的结构参数, 设计因素和设计水平如下表 2 所示。矩阵数值试验选 用标准的 L_16 正交数组,如下表 2 所示,只需 16 个 试验通过最优的因素水平组合来确定每个因素在不同 水平下对齿槽转矩的影响,这样可以节省大量的设计 优化验证时间。

因素	Level 1	Level 2	Level 3	Level 4

HK.NCCP

International Journal of Civil Engineering and Machinery Manufacture Volume 2, Issue 4, August, 2017

5.122

0.439

1.163

53.5%

4.6%

12.1%

HRib

Do

Rib

Bridge	0.5	1	1.5	2
HRib	1.5	2	2.5	3
Do	8	10	12	14
Rib	1.5	2	2.5	3

3.2 试验结果分析

对模型在有限元平台中进行参数优化分析,得到 所有因素的齿槽转矩如表 3 和图 5 所示,利用均值分 析和方差分析预估四个设计因素的影响和相关性。

表 3. 所有因素水平的齿槽转矩

Bridge (i)	HRib (i)	Do (i)	Rib (i)
1.175	2.568	1.516	1.361
2.172	1.942	1.947	1.768
2.194	1.666	1.886	1.997
1.626	0.992	1.819	2.042
	Bridge (i) 1.175 2.172 2.194 1.626	Bridge (i) HRib (i) 1.175 2.568 2.172 1.942 2.194 1.666 1.626 0.992	Bridge (i) HRib (i) Do (i) 1.175 2.568 1.516 2.172 1.942 1.947 2.194 1.666 1.886 1.626 0.992 1.819

图 5. 各因数水平对齿槽转矩均值的影响

可以通过方差分析来确定各个设计因素对齿槽转 矩影响的相关性,方差分析初,先要计算各个设计因 素的平方和,对于设计因素 Bridge 的平方和计算公 式如下:

$$SSF_{T_{c_Bridge}} = 4\sum_{i=1}^{4} \left(T_{c_{Bridgei}} - T_{cavg} \right)^2$$
(5)

同理,利用上式(5)可以计算出SSF_{Tc}_HRib、 SSF_{Tc}_D0、SSF_{Tc}_Rib,结果如下表4所示。

表 4. 所有影响因素特性分析

	SSF	Factor effect
Bridge	2.857	29.8%

图 7. 不同电流下转矩输出值

4 结论

图 6 为电机模型 A 利用田口法正交优化前后齿 槽转矩值的对比分析结果,优化后电机 A 的齿槽转 矩峰值为 0.56Nm,相比优化前齿槽转矩减小了 82%。齿槽转矩峰值越小,转矩波动越小,转矩输出 更平稳。图 7 为电机 A 优化后在不同电流取值下的 转矩输出,电机在 290A 时输出峰值转矩,120A 时 输出额定转矩,其转矩波动为 5.5%,优化后的电机 输出转矩平稳,证明优化的正确性。

References(参考文献)

- Gurakuq Dajaku, Dieter Gerling. Air-Gap Flux Density Characteristics of Salient Pole Synchronous Permanent-Machines [J]. IEEE Transactions on Magnetics, 2012,48(7):2196-2204.
- [2] Yang Haodong. Permanent magnet synchronous motor electromagnetic vibration analysis [D]. Doctoral Dissertation. Hangzhou:ZhejjangUniversity,2011.
- [3] Chen Weiwei. Electric vehicle permanent magnet synchronous motor design and temperature field analysis [D] Master's degree thesis. Nanjing: Nanjing University of Aeronautics and Astronautics, 2013.1.
- [4] Zheng Yi. Electric vehicle extended range device with permanent

magnet synchronous generator design research [D]. Master's degree thesis. Tianjin: Tianjin University,2013.

- [5] Wang Xiuhe. Permanent magnet motor [M]: 2nd edition. Beijing: China Electric Power Press, 134-135.
- [6] Wang Meiping. Electric vehicle with permanent magnet synchronous motor electromagnetic field analysis [D]. Master's de-
- gree thesis. Beijing: Beijing JiaotongUniversity,2012.
 [7] Z. Q. Zhu, C. C. Chan. Electrical Machine Topologies and Technologies for Electric, Hybrid, and Fuel Cell Vehicles. IEEE Vehicle Power and Propulsion Conference (VPPC), September 3-5,2008, Harbin, China: 751-755.