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Abstract: The selection of spatial basis functions will significantly affect the accuracy and efficiency of mod-
eling for nonlinear spatially distributed processes (SDP). The performance using the general spatial basis 
functions is not good enough which restricts the applications of the approximated models. The current study 
compares the model reduction performance of empirical eigenfunctions (EEFs) and a kind of new basis func-
tions for the spatially distributed processes, which are obtained from general spatial basis functions by linear 
transformation, and the transformation matrix is derived using empirical balanced truncation. The EEFs are 
assumed the optimal in the sense of the least squares errors for the model reduction of spatially distributed 
processes, however, the results of the simulations show that the accuracy of the modeling based on the present 
new basis functions is better than that based on the EEFs derived from the measured spatio-temporal data. 
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1. Introduction 
Many of industrial processes such as convection and dif-
fusion reaction process, thermal process and fluid flow 
belong to SDPs [1]. Their inputs, outputs, states and pa-
rameters vary both temporally and spatially. The first-
principle modeling typically leads to various partial diffe-
rential equations (PDEs), which such models can accu-
rately predict the nonlinear and spatially distributed dy-
namical behavior. However, Because of the infinite-
dimensional nature of these systems, it will does not al-
low their direct use due to limited computation capacity 
for numerical implementation and finite actuators/sensors 
for practical control. Thus, a finite-dimensional modeling 
is usually required for engineering applications, which 
makes the model reduction essential to SDP modeling. 
The selection of spatial basis functions is important for 
the accuracy and efficiency of the modeling of nonlinear 
spatially distributed processes. Under the time–space 
separation framework[2], different approaches and me-
thods will arise according to the combination proper 
model reduction approaches and spatial basis functions 
selection. The popular global basis functions are intro-
duced for model reduction mainly including empirical 
eigenfunctions (EEFs) [3] and analytical basis func-
tions[4]. However, general analytical basis functions may 
not be optimal in the sense that the dimension of the re-

duced model is not the lowest for a given accuracy. Al-
though the model dimension can be further reduced using 
nonlinear weighted residual method (WRM)[1,5] such as 
the approximate manifold method[1], the structure of the 
algorithm is very complex and the computation is signifi-
cantly large.  
As a popular spatial basis functions from the measured 
data, EEFs are often used for the model reduction of the 
spatially distributed processes. To  obtain  the  EEFs, a 
basic assumption is made that the measured data fully  
represent  the  temporal  progress  of  a  spatially distri-
buted process.  Thus, the empirical eigenfunctions also 
have its limits for the engineering applications. Because 
the spatio-temporal measured data for the computation of 
the EEFs depends on the number and locations of the 
sensors in the spatially distributed processes, the number 
of the EEFs for the availability of sensors and actuators.  
Thus, the order and accuracy of the modeling of spatially 
distributed processes are limited for the only use of the 
input-output data.  
In this note, a kind of new basis functions derived by 
empirical balanced truncation[6,7,8] is proposed for the 
modeling of spatially distributed processes. The new 
spatial basis functions are also obtained by the linear 
transformation of the general eigenfunctions, and the 
transformation matrix is derived by empirical balanced 
truncation for the corresponding high-order nonlinear 
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ordinary differential equation (ODE) systems of SDP s, 
which is derived using spectral method[9] based on a 
complete family of eigenfunctions of SDPs. This ap-
proach combines the ease of use of linear theory with the 
flexibility required for modeling of nonlinear spatially 
distributed processes. The modeling performances of the 
new basis functions are compared with the empirical 
eigenfunctions. The results of the simulations show that 
the accuracy of the modeling based on the present new 
basis functions is better than that based on the empirical 
eigenfunctions derived from the measured spatio-
temporal data. 

2. Eigenfunctions for the Modeling of SDPs 
Assume that a nonlinear SDP is governed by a PDE with 
following state description:  

( ), , ,X X U F X U
t

∂
= + +

∂
L LA B                  (1) 

In Eq.(1), [0, )t ∈ ∞  is time variable, Ω∈z  is the spa-
tial coordinate, and only one spatial-dimension is consi-
dered. A  and B  are two linear operators that involve 
linear spatial derivatives for X  and U , where 

( , )X X z t=  denotes the vector of state variable and 

1
( , ) ( ) ( )p

i ii
U U z t u t h z

=
= = ∑  denotes the vector of 

manipulated spatio-temporal input. 
( , / , , , / , )F X X z U U z∂ ∂ ∂ ∂L L  is a nonlinear func-

tion containing spatial derivatives for ( , )X z t  and 
( , ).U z t  Eq.(1) is considered on a bounded spatial domain 

Ω  and subjects to a number of boundary and initial con-
ditions. The phase space of (1) is on the infinite-
dimensional Hilbert space ( )H Ω  of sufficiently smooth 
functions from Ω  into real numbers. A scalar products is 
introduced in ( )H Ω , which is usually given by 

[ ] ( ) ( ),g h g z h z dz
Ω

= ∫  for two arbitrary functions 
( ), ( ) ( )g z h z H∈ Ω . 

A family denotes the infinite set of the eigenfunctions of 
linear operator A  for PDE (1) is first derived by the 
following equation: 

( ) ( ) , 1, 2,i i iz z iφ λφ= = LA                       (2) 
This family is a complete family of smooth global spatial 
orthogonal basis functions 1 2{ ( ), ( ), , }z zφ φ L L . The 
spatio-temporal variable of PDE (1) can be expanded 
onto the infinite number of eigenfunctions with the cor-
responding temporal coefficients.   
Suppose that the system is controlled by p  actuators 
with implemental temporal signal ( )u t , 

1 2( ) [ ( ), ( ), , ( )]T
pu t u t u t u t= L  and certain spatial dis-

tributions. The spatiai-temporal output ( , )Y z t  is meas-

ured at M  locations. Due to the orthogonal of the eigen-
functions, an infinite-dimensional ODE system can be 
obtained by the Galerkin method as follows. 
To reduce the infinite-dimensional nonlinear ODE sys-
tem in to a finite set of nonlinear ODE equations, the fast 
modes are excluded according to the eigenvalues, and the 
retained finite-dimensional nonlinear ODE system can be 
rewritten in a general form as follows: 

( ) ( ) ( ) ( ) ( )( )
( ) ( )

,x t Ax t Bu t f x t u t

y t Cx t

= + +

=

&
       (3) 

Where   ( ) [ ]1 2, , , T

Nx t x x x= L ,

( ) ( ) ( ) ( )[ ]1 2, , , , , , T

My t Y z t Y z t Y z t= L , 

( )1 2, , , NA diag λ λ λ= L , 

ij N p
B b

×
=    , ( ( )) ( )ij j ib h z z dzφ

Ω
= Β∫ , 

ij L N
C c

×
=    , ( )ij j ic zϕ= , , 1, 2, ,lz l L= L  in the lth  

of L  measured spatial locations. 

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]1 2, , , , , , ,
T

Nf x t u t f x t u t f x t u t f x t u t= L

and  
ˆ( ( ), ( )) ( , / , , , / , ) ( )i if x t u t F X X z U U z z dzφ

Ω
= ∂ ∂ ∂ ∂∫ L L

3. New Basis Functions Derived by Balanc-
ing of Empirical Gramians 
Let each new spatial basis function be a linear combina-
tion of the first N eigenfunctions corresponding to finite-
dimensional nonlinear ODE system (3) of nonlinear spa-
tially distributed processes. Define a basis function trans-
formation matrix S , we have  

( ) ( ) ( ){ } ( ) ( ) ( ){ }1 2 1 2, , , , , ,K Nz z z z z z Sϕ ϕ ϕ φ φ φ=L L  (4) 

where K N< , 1 2{ ( ), ( ), , ( )}Kz z zφ φ φL  and 

1 2{ ( ), ( ), , ( )}Nz z zϕ ϕ ϕL  denote new spatial basis 
functions and eigenfunctions, respectively.  
The spatio-temporal variable of the PDE (1) can be ex-
panded onto the new spatial basis functions ( )i zφ  with 

the corresponding temporal coefficients ( )ix t  as follows. 

( ) ( ) ( )
1

,
K

i i
i

X z t x t zφ
=

≈ ∑                                            (5) 

Using the basis functions expansions and Galerkin me-
thod will transform Eq.(1) into 

( ) ( ) ( ) ( ) ( )( ),Dx t Ax t Bu t g x t u t= + +&             (6) 

Let the 1D−  denotes the inverse matrix of D , iS  denotes 

the i th column of the matrix S  then a nonlinear ODE 
system with fewer modes of nonlinear PDE (1) can be 
derived as follows. 
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( ) ( ) ( ) ( ) ( )( )
( ) ( )

1 1 1 ,x t D Ax t D Bu t D g x t u t

y t Cx t

− − −= + +

=

&
 (7) 

Where ( ) ( ) ( ) ( )[ ]1 2, , , T

Kx t x t x t x t= L , 

            ( ) ( ) ( ) ( )1 2, , ,
T

pu t u t u t u t=   L , 
            

( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )[ ]1 2, , , , , , ,
T

Kg x t u t g x t u t g x t u t g x t u t= L

and 

( ) ( ) ( ) ( )
1

N
T

ij i j ki kj i j i j
k

D z z dz S S z z dz S Sφ φ ϕ ϕ
Ω Ω

=

= = =∑∫ ∫         

( )( ) ( ) ( ) ( )
1 1

N N
T

ij j i kj k ki k i j
k k

A z z dz S z S z dz S ASφ φ ϕ ϕ
Ω Ω

= =

= = =  
  
  
∑ ∑∫ ∫A A

( )( ) ( ) ( )( ) ( )
1

N
T

ij j i j ki k i j
k

B h z z dz h z S z dz S Bφ ϕ
Ω Ω

=

= = = 
 
 
∑∫ ∫B B

( ) [ ]1 2ij j i i i iN jC z c c c Sφ= = L , 

( ) ( )( )

( ) ( )
( ) ( )

( ) ( )
( ) ( )

( )11

1 1

,

, , , , , .

i

pK

i ii i pK
ii

i i i i j
i i

g x t u t

u t h zx t z
F x t z u t h z z dz

z z

φ
φ φ==

Ω
= =

∂∂
=

∂ ∂

   
        

 
 
 

∑∑
∑ ∑∫ L L

  
In this section, an algorithm to obtain the spatial basis 
functions transformation matrix by empirical balanced 
truncation[6-8] is present for the nonlinear ODE system 
(3), taking explicit account of the input-output connec-
tion of the system. For the nonlinear system (3), the fol-
lowing sets need to be defined for empirical gramians. 
Let 1 2{ , , , }N

rT T T T= L  be a set of r  orthogonal N N×  
matrices, where r  denotes the number of matrices for 
excitation/perturbation directions. Let

1 2{ , , , }s
sM c c c= L  be a set of s  positive constants, 

where s  denotes the number of different excita-
tion/perturbation sizes for each direction. Let

1 2{ , , , }p
pE e e e= L  be p  standard unit vectors in pℜ , 

where p  denotes the number of  inputs to the system (3). 
Given a function ( )x t , define the mean  by

( )
0

( ) lim
T

T
x t x t dt T

→∞
〈 〉 = ∫ . For system (3), define the 

empirical controllability gramian by 

( )2 0
1 1 1

1ˆ
pr s

ilm
C

l m i m

W t dt
rsc

∞

= = =

= Φ∑∑∑ ∫                                       (8) 

Where ( )ilm tΦ ∈ℜ  is given by 

( ) ( ( ) )( ( ) )ilm ilm ilm ilm ilm Tt x t x x t xΦ = − − , and ( )ilmx t  
is the state of system(3) corresponding to the impulsive 
input ( ) ( )m l iu t c T e tδ= . 
For system (3), define the empirical observability gra-
mian by 

( )2 0
1 1

1ˆ
r s

lm T
O l l

l m m

W T t T dt
rsc

∞

= =

= Ψ∑∑ ∫                                    (9) 

Where ( )ilm N Nt ×Ψ ∈ℜ  is given by 

( ) ( ( ) ) ( ( ) )lm ilm ilm T ilm ilm
ij t y t y y t yΨ = − − , and ( )ilmy t  

is the output of system(3) corresponding to the initial 
condition 0 m l ix c T e=  with the ( ) 0u t = . 
The empirical controllability gramian and empirical ob-
servability gramian are computable generalization of 
controllability gramian and observability gramian to non-
linear systems. It therefore led to a methodology for 
model reduction of nonlinear ODE system (3) motivated 
by a standard idea from realization theory. Because the 
empirical gramians are by the nature based upon discrete 
measured of system properties, like states and outputs, it 
is advantageous to reformulate them in a discrete form 
for numerically calculation. A simple numerical tech-
nique for balancing the empirical gramians ˆ

cW  and ˆ
OW  is 

shown as follows. First, apply the Cholesky factoriza-
tion[10] to ˆ

OW  so that ˆ T
OW ZZ= , where Z  is a lower 

triangular matrix with non-negative diagonal entries. Let 
2 TU UΣ be a eigenvalue decomposition of ˆTZ WcZ . Thus, 

1/ 2 1TS U Z −= Σ , and the transformed empirical gramians 
1 1ˆ ˆ; ( )T TWc SWcS Wo S WoS− −= = . 

The nonlinear ODE system (3) that is balanced has the 
following form, which empirical controllability gramian 
Wc and empirical observability gramian Wo are equal to 

1 2( , , , )Ndiag σ σ σΣ = L . 1 2 3 0Nσ σ σ σ≥ ≥ ≥ ≥L  
and the iσ ’s are the Hankel singular values. The columns 
of S  may be thought of as giving the modes of the sys-
tem associated with the Hankel singular values in Σ . To 
derive a superior set of new spatial basis functions, the 
first K  columns of matrix S  of balancing of the empiri-
cal gramians is selected to be a N K×  spatial basis 
functions transformation matrix. Using the MATLAB 
style colon notation, transformation matrix

(:,1: )S S K= . The performance of the new spatial 
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basis functions from this transformation matrix is illu-
strated by a numerical example. 

4. Comparisons of the Performance with 
Empirical Eigenfunctions 
In order to compare the modeling performance with em-
pirical eigenfunctions for nonlinear spatially distributed 
processes, a long thin rod[11] in a reactor as is studied 
which is a typical transport-reaction process in the chem-
ical industry. The reactor is fed with pure species A and a 
zeroth order exothermic catalytic reaction of the form 
A→B takes place in the rod. Since the reaction is exo-
thermic, a cooling medium that is in contact with the road 
is used for cooling.  
After choosing spatial orthogonal basis functions for 
time/space separation, the set of new spatial basis func-
tions and empirical eigenfunctions are used for modeling 
of the nonlinear spatially distributed processes respec-
tively.   
Suppose that ( , )Y z t and ( , )Y z t  are the measured out-
put and the prediction output at M  spatial locations 

1 2, , , Mz z zL  and some sampling times 1 2, , , Ntimt t tL , re-
spectively. The root of mean square error (RMSE) be-
tween the real dynamical process and the approximation 
model is defined as the performance index as follows: 

( ) ( )( )2

1 1

ˆ, ,
M Ntim

i j i j
i j

RSME Y z t Y z t M Ntim
= =

= − ⋅∑∑         (10) 

Under the assumption of constant density and heat capac-
ity of the rod, constant conductivity of the rod, and con-
stant temperature at both sides of the rod, and excess of 
species A in the furnace, the mathematical model that 
describes the spatio-temporal evolution of the rod tem-
perature consists of the following parabolic PDE: 

( ) ( ) ( )( ) ( ) ( ) ( )( )
2

/ 1

2

, ,
,TT

T u

X z t X z t
e e h z u t X z t

t z
γ γβ β− + −∂ ∂

= + − + −
∂ ∂

                                                                                     

(11) 
 In this study, (11) subject to the following Dirichlet 
boundary and initial conditions: 

( ) ( ) ( ) ( )00, 0, , 0, , 0X t X t X z X zπ= = =                    (12) 
Where ( , ), ( ), ( ), ,T uX z t u t h z β β , γ denote the temperature 
in the reactor, the manipulated input (temperature of the 
cooling medium), the actuator distribution, the heat of 
reaction , the heat transfer coefficient, and the activation 
energy，respectively.  The process parameters are set to 
be 50, 2, 4T uβ β γ= = = . There are four actuators 

1 2 4( ) [ ( ), ( ), ( )]Tu t u t u t u t= L available with the spatial dis-
tribution functions 1 2 4( ) [ ( ), ( ), ( )]Th z h z h z h z= L , where 

( ) ( ( 1) / 4) ( / 4), 1, 2,3, 4ih z H z i H z i iπ π= − − − − =  and 
( )H ⋅  is the standard Heaviside function. The input sig-

nals are selected as 

( ) 1.1 4sin( / 10 /10), 1, 2, 3, 4iu t t i i= + + = . Suppose that 
nineteen sensors uniformly distributed in the space are 
used for measurement. Four hundred data for each sensor 
location is collected from (11). The sampling interval t∆  
is 0.01s and the simulation time is 4s. The initial condi-
tion 0 ( )X z  is set to be sin( )z .  
To compare the modeling performance based on the new 
basis functions and EEFs with the same order, the same 
input signals are used. Nineteen sensors that have been 
uniformly distributed in the space are used for measure-
ments. The random process noise is bounded by 0.3 with 
zero mean. The EEFs used for time/space separation and 
dimension reduction are selected from Karhunen-Loeve 
(KL) decomposition. In the Galerkin method, obtaining 
an exact analytical description of the low-dimensional 
ODE systems is difficult because of the nonlinearities in 
the system. Therefore, the neural networks are used to 
identify the long-term dynamics from the inputs and 
temporal coefficients. As the energy percentage of the 
first three EEFs has reached larger than 99%, the RMSEs 
of the approximated models based on two kinds of basis 
functions on testing data are compared in Table S1 in 
support information. As shown in Table 1, the values of 
the RMSE using the new spatial basis functions are little 
smaller than when using the same number of EEFs. 

Table 1. Comparisons for RMSEs with empirical 
eigenfunctions 

RMSE 1K =  2K =  3K =  
EEFs 0.3023 0.1987 0.0930 

New spatial 
basis functions 0.2879 0.1652 0.0822 

 
From the Table 1, the RMSEs for the predicted tempera-
ture distributions of approximate models based on the 
proposed new spatial basis functions of kind two and 
EEFs are 0.0822 and 0.0930, respectively. In many cases, 
EEFs are frequently used in Galerkin projections to ob-
tain low-dimensional models of DPSs. However, the op-
timality of the KL decomposition lies in a posteriori data 
reconstruction, and there are no guarantees of optimality 
in modeling. In order to illustrate the details of the com-
parisons for the two kinds of spatial basis functions, the 
first three EEFs and the first new spatial basis functions 
are shown in Figure 1 and Figure 2 respectively. 

 
Figure 1. The first three empirical eigenfunctions 
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Figure 2. The first three new spatial basis functions 

 
Figure 3. Temperature distributions with a three-order 

approximate model based on new basis functions 

 
Figure 4. Temperature distributions with a three-order 
approximate model based on empirical eigenfunctions 

The approximate temperature distributions of the catalyt-
ic rod based on a three-order dynamical model and a 
three-order dynamical model based on EEFs are shown 
in Figure 3 and 4, respectively. Apparently, the perfor-
mance of temperature distribution with a three-order ap-

proximate model based on new basis functions in Figure 
3 is better than that based on three EEFs in Figure 4. 

Conclusion 
The current study compares the model reduction perfor-
mance of empirical eigenfunctions (EEFs) and a kind of 
new basis functions for the spatially distributed processes, 
which are obtained from general spatial basis functions 
by linear transformation, and the transformation matrix is 
derived using empirical balanced truncation. The pro-
posed new basis functions were calculated using the li-
near theory of matrix computation for nonlinear 
processes. The results of the simulations showed that the 
accuracy of the modeling based on the present new basis 
functions was better than that based on the empirical ei-
genfunctions derived from the measured spatio-temporal 
data. 

Acknowledgment 
This project is supported by National Natural Science 
Foundation of China (Grant No. 51305133). Open Fund 
of State Key Laboratory of Mechanical System and Vi-
bration (MSV201404), Financial Support from National 
Natural Science Foundation of Hunan province 
(13JJB007), Project of The Education Department of 
Hunan Province (13C317,12C0117), Open Fund of Hu-
nan Provincial Key Laboratory of Health Maintenance 
for Mechanical Equipment are also gratefully acknowl-
edged. 
 
References 
[1] Christofides, P.D. Nonlinear and robust control of PDE systems: 

Methods and applications to transport-reaction processes; 
Birkhauser: Boston, MA, 2001. 

[2] Li, H. X.; Qi, C. K. Modeling of distributed parameter systems 
for applications—A synthesized review from time–space 
separation. J. Process Control 2010, 20(8), 891. 

[3] Park, H. M.; Cho, D. H. The use of the Karhunen-Loeve 
decomposition for the modeling of distributed parameter systems. 
Chem. Eng. Sci. 1996, 51, 81. 

[4] Baker, J.; Christofides P. D. Finite-dimensional approximation 
and control of non-linear parabolic PDE systems. Int. J. Control 
2000, 73(5), 439. 

[5] Ray, W.H. Advanced process control; Butterworths: NewYork, 
1981. 

[6] Lall A.; Marsden J. E. ; Glavaski S. A subspace approach to 
balanced truncation for model reduction of nonlinear control 
system. Inter. J. Robust and Nonlin. Control 2002, 12, 519. 

[7] Hahn, J. ; Edgar T.F. An improved method for nonlinear model 
reduction using balancing of empirical gramians. Comput. Chem. 
Eng. 2002, 26(10), 1379. 

[8] Hahn, J.; Edgar, T.F. Balancing approach to minimal realization 
and model reduction of stable nonlinear systems. Ind. Eng. Chem. 
Res. 2002, 41(9), 2204. 

[9] Boyd J.P. Chebyshev and Fourier Spectral Methods; Dover 
Publications: NewYork, 2001. 

0 0.5 1 1.5 2 2.5 3
-1.5

-1

-0.5

0

0.5

1

1.5

2

 

 

The 1st new basis function
The 2nd new basis function
The 3rd new basis function

0
50

100
150

200
250

300

0
5

10
15

20
0

5

10

15

20

TimeSensors

Te
m

pe
ra

tu
re

20
15

10
5

0 0 50 100 150 200 250 300

0

5

10

15

20

TimeSensors

Te
m

pe
ra

tu
re

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

http://www.fineprint.cn
http://www.fineprint.cn


HK.NCCP                                         International Journal of Intelligent Information and Management Science 
                                                                   ISSN: 2307-0692                                        Volume 3, Issue 4, August 2014 

11 
 

[10] Golub G. H.; CF V. L., eds. Matrix Computations. Johns 
Hopkins University Press: Washington, D.C., 1996. 

[11] Qi, C.K. and Li H.X., A time/space separation-based 
Hammerstein modeling approach for nonlinear distributed 

parameter processes. Computers & Chemical Engineering, 2009. 
33(7): 1247-1260. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PDF 文件使用 "pdfFactory Pro" 试用版本创建 www.fineprint.cn

http://www.fineprint.cn
http://www.fineprint.cn

