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Abstract: In the era of big data, we are exposed to more and more digital images, and inevitably, various de-

grees of deterioration and distortion occur in the process of image formation, transmission, storage, recording 

and display. People's lives are becoming more and more abundant, the application of cameras is becoming 

more and more common, and motion blur is also a problem that is easy to occur in the imaging process. As 

images become more closely related to people's lives, the demand for high quality images is increasing. In 

this paper, we first introduce two methods for the formation of motion blur images, namely the heavy-tailed 

distribution method and the Fourier transform method. The heavy-tailed distribution method can determine 

whether the image is a blurred image by using the obtained graphic, and the Fourier transform method is 

mainly used to determine which kind of blurred image the fuzzy image is specifically. Through the analysis of 

the causes of image formation, we have stepwise optimization of our images from two different angles, name-

ly, deblurring and denoising. We first assume that the noise conditions are known, and use the modeling 

method to simulate the fuzzy trajectory of the motion blur picture, and obtain a clear image based on the ob-

tained fuzzy trajectory combined with the non-blind deblurring algorithm. 

Keywords: Motion blurred image defuzzification; Fourier transform; Normalized factor model; Non-blind 

deblurring algorithm; Wiener filtering 

 

1. Introduction 

Since the human eye has a visual persistence effect, when 

watching a moving object, each frame of the picture is 

seen to contain a motion process for a period of time 

(about 1/24 second), so the frame is actually blurred. For 

the screenshot of the movie, every frame of the dynamic 

picture is also blurred. In general, every frame of a com-

puter game is drawn in a clear static manner, so a higher 

frame rate is required to feel smooth, otherwise it will not 

feel smooth enough. In order to achieve a smoother feel-

ing at a lower frame rate, in computer vision technology, 

an algorithm capable of simulating a dynamic blur effect 

has been developed. Therefore, this paper studies the 

motion blur image deblurring process by establishing a 

model, and makes the given picture as clear as possible. 

2. Specific Issues 

When giving a picture of a motion blur, it is difficult to 

see the details of the landscape being photographed. De-

sign a reasonable mathematical model to recover as clear 

a picture as possible (for simplicity, assume that the mo-

tion of the camera causes blurring, that is, all the land-

scapes in the picture move at the same speed). 

3. Model Assumption 

Assume that the image is caused by a factor, motion. 

It is assumed that the noise condition is known when the 

blind deblurring algorithm is performed, and other condi-

tions are predetermined. 

4. Mathematical Model for Motion Blurred 

Image Restoration based on Fuzzy Trajec-

tory 

4.1. Model preparation 

According to the access data, we know that the degrada-

tion model of the image is generally: 

( , ) ( , ) ( , ) ( , )g x y h x y f x y x y                  (1) 

In this model ( , )h x y  is a spatial representation of the 

degenerate function. The model can be seen as a clear 

image through the filter of the degenerate function and 

then added to the noise. Then the fuzzy model of the im-

age can also be represented by this model. We transform 

this model into D C k Z   . Where D is the blurred 

image, T is the additional noise, and C is the clear image. 

The meaning of this equation is that the clear image C is 

blurred by the blur trajectory k during the exposure peri-

od when the camera is exposed, and the external noise Z 

is added to form the blur. Image D. 

4.2. Model establishment and solution 

According to the Bayesian probability formula: 
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( ) ( )
( )

( )

P B A P A
P A B

P B


                        (2) 

Not only do we need to find the maximum likelihood 

estimate of the sharp image L but also the fuzzy trajecto-

ry k, and only D is the known prior distribution. Ex-

pressed in the form of probability, the posterior probabil-

ity of ( , )P L k D  is: 

( , ) ( , )
( , )

( )

P D C k P C k
P C k D

P D


                    (3) 

This equation represents the known D, and k and L can 

be expanded by a Bayesian formula and converted into a 

proportional relationship: 

( , ) ( , ) ( , )P C k D P D C k P C k                    (4) 

In this case, the denominator of the test probability is 

independent of k and C, so it can be ignored in calculat-

ing the posterior probability. According to C and k are 

independent of each other, so (4) can be written as: 

( , ) ( , ) ( ) ( )P C k D P D C k P C P k                 (5) 

Taking the negative logarithm of both (5) equations at the 

same time, we turn the solution of the probability maxi-

mization problem into the problem of energy minimiza-

tion. We get the energy equation: 
( , ) log[ ( , )

log[ ( , ) ( ) ( )]

log[ ( , )] log [ ] log[ ]

E C k D P C k D

P D C k P C P k

P D C k P C k

 

   

   

            (6) 

Then use the energy function instead of the logarithmic 

form to get the following equation: 

( , ) ( , ) ( ) ( )E C k D E D C k E C E k              (7) 

Then we analyze the right side of the equation of (7). 

The heavy tail distribution of natural clear images is 

shown in figure 1. 

 

 

Figure 1. Heavy-tailed distribution of natural image gradi-

ents 

Furthermore, we use a mixed Gaussian model with zero 

distribution and its similarity to fit. 

( ) ( 0, ) ( 0, )i i y i

i i

P C N C N C                    (8) 

Take the logarithm of both sides of (8) and get the energy 

equation: 

2 2

22

2 2

( )( ) 2
( ) (log )

2 2 2
1 1 2

(log )
2 2 2

y ix i

i i i

x i y i
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CC
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C C
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  


  
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  



            (9) 

Where 2

1 2 3 2

2
,

2
i nC C C C C


           令 , then (9) can 

be expressed as: 
2 2

( ) X YE C C C                       (10) 

Then we use a piecewise function to better fit the long 

tail distribution of the natural image gradient: 

             
2

,
( ) ( )

( ),

i

i

k x x c
x f x

ax b x c


 
  

  
            (11) 

Therefore ( )P C  should be expressed as: 

( )
( ) ic

i

P C e
 

                     (12) 

Replace the original Gaussian fitting with the new fitting 

formula, (3-6) can be expressed as: 
2

12

22 2

2

1
( , ) ( ) ( ) ( )

2

( )

i i x y

i

x x y y i

E C k D D C k C C

C D M C D M D k

  




      

        

 (13) 

The order on the right side of the above formula is the 

same as the order on the right side of (7). The last item 

represents the difference between the actual gradient of 

the image and the fitted model. It can be regarded as 

noise, in order to solve the minimum value of (13). The 

method of solving the fuzzy trajectory separately from 

the clear image is adopted, and the item containing the 

fuzzy trajectory in (13) is extracted, and the energy equa-

tion including the fuzzy trajectory is: 
2 2

2

1
( )
2

k i i i

i

E D C k D k


               (14) 

The convolution can be seen as the multiplication of the 

matrix, thus transforming (14) into a matrix multiplied 

form: 
2 2

k i iE Ak D k                     (15) 

By using the interior point method, the fuzzy trajectory is 

solved as: 

( ) log i

i

E k k                       (16) 

According to the fuzzy trajectory, the Fourier transform 

method is used to perform the deconvolution operation to 

obtain a clear image C, and then the clear image is 

brought back (14) to calculate the fuzzy trajectory, and 

then iteratively continues until 510C   , clear images 

after recovery. The solution to get a clear image based on 

the calculation is: 

1 1 2

1 2

1 2
( )

1 2

FW F W k D
C F

F F F F k k

    


   
              (17) 

However, the solution of the clear image obtained by this 

method will have a ringing effect. Therefore, the L0 

regularized image gradient sparse a priori function model 

is used for the image. This method has a certain smooth-

ing effect on the image but does not affect the image. The 
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main structure, so the image recovery cost function mod-

el based on L0 gradient sparsity test is as follows: 
2

*Min C k D C                    (18) 

The L0 regularization gradient satisfies the calculation of 

the number of pixels whose gradient is not zero. Which is: 

( ) #( 0h p v pG C p C C                   (19) 

Where p represents a pixel that satisfies the condition, 

and 
h pC  and 

v pC  are the color difference of each pixel 

p in adjacent pixels along the x and y directions, and 

( )Z

h p v pC C C     . To solve this L0 norm regulariza-

tion optimization problem, the auxiliary variables 
pdh  

and 
pdv  can be introduced, and the cost function be-

comes the following: 
2 2[ * ) ( , ) (( )2 ( ) )]p h p p v p p

p

Min C k d G dh dv C dh C dh          (20) 

Where ( . ) #( 0)p pG dh dv p dh dv   , 
pdh and 

pdv  are 

the differential variables of the 
h pC  and 

v pC  approxi-

mate images, respectively. After derivation, the solution 

of the final clear image C obtained is: 

1 ( ) ( ) ( ( ) ( ) ( ) ( ))
( )

( ) ( ) ( ( ) ( ) ( ) ( ))

h h v v

h h v v v

F k F d F F d F F d
C F

F k F k F F F F d





      


       
             (21) 

Finally, according to the solution of the clear image, the 

function deconvwnr of MATLAB is used to carry out the 

Wiener de-wave to achieve the effect of removing noise. 

The obtained picture is compared with the original pic-

ture as follows: 

 

 

Figure 2. Original image 

 

Figure 3. Corrected figure 

Since this question only gives the picture and does not 

give the complete reason for the fuzzy image formation 

and our model is not perfect, there are inevitable errors 

that make the final corrected picture not so clear. 
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