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Abstract: Aiming at the problem of low precision of traditional wear monitoring model, a friction and wear 

monitoring model of laser cladding high entropy alloys is constructed. After decomposition of the input wear 

signal by wavelet packet decomposition, FFT is used to extract the characteristic parameters in the decompo-

sition sequence. Taking the characteristic parameters as the parameters of the neural network, the training 

sample set is used to train the neural network. Wear data were analyzed by using neural network after training. 

Combining d-s theory to determine the relevant parameters of the model and improve the monitoring accuracy, 

the construction of the monitoring model is completed. Compared with the traditional monitoring model, the 

monitoring precision of the established monitoring model is about 3 times that of the traditional monitoring 

model, which is more suitable for monitoring the friction and wear of laser cladding high entropy alloys. 
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1. Introduction 

In terms of the development of human ability to develop 

materials, the alloys composition has gone through a pro-

cess from simple to complex. The continuous improve-

ment of the function and performance of the alloys pro-

motes the progress of human civilization. As a new 

hotspot in the field of alloys, high entropy alloys are 

widely concerned and studied because of their excellent 

properties. High entropy alloys with excellent properties 

can be obtained by selecting appropriate components and 

compositions. High entropy alloys with multiple compo-

nents can effectively improve the microstructure and 

properties of alloys. Compared with traditional alloys, 

high entropy alloys have excellent properties such as 

high strength and hardness, excellent corrosion resistance 

and thermal stability, good fatigue resistance and fracture 

strength. In the high entropy alloys using laser cladding 

coating material of substrate surface is selected by the 

laser irradiation make a thin layer of melted at the same 

time, the sum of the substrate and forming a low dilution 

degrees after rapid solidification, and matrix combination 

of metallurgical bonding surface coating, at the same 

time of improving the wearability high entropy alloys 

and save a lot of valuable elements. In combination with 

the characteristics of high entropy alloys themself, laser 

cladding further improves the surface properties of the 

alloys and widens the application range of high entropy 

alloys [1]. 

In order to monitor the friction and wear degree of laser 

cladding high entropy alloys the traditional monitoring 

model usually only monitors the integrity of the cladding 

coating of high entropy alloys. Monitoring of high entro-

py alloys is usually divided into indirect and direct moni-

toring [2]. Direct monitoring is to monitor the friction 

and wear of alloys through tools. Indirect monitoring is 

through the sensor contact monitoring or through infrared, 

laser and other means of detection. However, the tradi-

tional monitoring has the problem of low monitoring 

accuracy, so this paper will establish a model to monitor 

the friction and wear of laser cladding high entropy al-

loys. 

2. Laser Cladding High Entropy Alloys 

Friction and Wear Monitoring Model 

The overall block diagram of the friction and wear detec-

tion model of laser cladding high entropy alloys is shown 

in figure 1. The high entropy alloy wear changes detected 

by the laser sensor are input into the detection model in 

the form of signals. The detection model processes the 

signal by wavelet packet decomposition and extracts the 

characteristic parameters from the decomposition results 

by FFT. Taking the characteristic parameters as the pa-

rameters of the input layer of the neural network, the 

wear data are analyzed by training and testing the neural 

network. Combined with d-s theory, the monitoring 

model is built by setting up relevant parameters and im-

proving the monitoring accuracy. 
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Figure 1. Overall block diagram of laser cladding high entropy alloys friction and wear monitoring model 

2.1. Wear signal decomposition and feature extrac-

tion 

The wear signal of high entropy alloys transmitted by 

laser sensor needs to be processed by wavelet packet 

decomposition. Wavelet packet decomposition is a band 

decomposition technique, which is extended from wave-

let analysis and a method for more detailed analysis and 

reconstruction of signals [3]. The signal transmitted by 

the sensor is decomposed into 8 independent frequency 

bands, and then the wavelet packet decomposition coeffi-

cients of 8 nodes are reconstructed to extract the wavelet 

packet values of 8 sub-bands. Wavelet transform has 

multiresolution and can decompose signal into simple 

branches carrying different frequency band information 

without losing energy, which is suitable for multi-scale 

analysis. For a finite energy function  f t , which satis-

fies    2f t L R , its continuous wavelet transform is as 

follows: 
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  is the scale factor; b R  

is the translation factor;  t  is the female wavelet. 

 ,a b t  is a wavelet basis function generated by scaling 

and time translation of  t  [4]. Through the change of 

scale factor a and translation factor b, the wavelet win-

dow moves along the time axis, and the function on the 

whole time axis is analyzed on different scales. Figure 2 

is a schematic diagram of three-layer wavelet packet 

decomposition. 
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Figure 2. Schematic diagram of three-layer wavelet packet 

decomposition 

From the point of view of signal filtering, wavelet packet 

decomposition is to filter the decomposed signal through 

a low-pass filter and a high-pass filter, respectively. After 

decomposition, a group of low-frequency signals and a 

group of high-frequency signals are obtained respectively, 

and the signal is further decomposed. The coefficients of 

jcA  and jcD  at different scales are obtained by wavelet 

decomposition using orthogonal wavelet basis. The fre-

quency range of low-frequency component  A k and 

high-frequency component  D k  obtained after each 

decomposition is as follows: 

   

   

1

1

: 2 ,2

: 0,2

j j

s s

j

s

D k f f

A k f

  

 

  
  


 
 

                  (3) 

In formula (3), j=1,2... M; 
sf  is the signal sampling fre-

quency [5]. After wavelet packet decomposition of the 

wear signal, FFT is used to extract the wear characteris-

tics from the decomposed information sequence. The 

singular value is used as the characteristic parameter to 

describe the friction and wear process. 

According to the definition of singular value decomposi-

tion, let's say that A is an m×n matrix, there must be an 

orthogonal matrix, such that A= USVT, where S is a di-

agonal matrix. 
0

0 0
S

 
  
 

，  1 2, , , rdiag     ，

r=rank（A） .The singular values of its diagonal ele-

ments, namely A, are arranged in descending order, 

namely 
1 2 r     . If these non-zero singular values 

form an eigenvector  1 2, , , rd    , it can be known 

from the properties of matrix singular values that the 

eigenvector can be used as an eigenparameter to uniquely 

represent the matrix [6]. The extracted characteristic pa-

rameters need to be normalized according to formula (4). 

Take the maximum value 
maxx  and the minimum value 

minx  of the parameters, and make the characteristic pa-

rameters in the same quantity level through the following 

processing. 

min

max min

x x
x

x x


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After the characteristic parameters are normalized, the 

friction and wear data of laser cladding high entropy al-

loys are analyzed by using neural network. 

2.2. Wear data analysis 

After the normalization of the characteristic parameters, 

the tri-layer feed forward neural network was used to 

analyze the friction and wear data of laser cladding high 

entropy alloys. In the neural network structure shown in 

figure 3, there are n nodes in the input layer, p nodes in 

the hidden layer, and q nodes in the output layer. Q out-

put nodes correspond to the friction and wear state of q 

high-entropy alloys, respectively. The input value of in-

put layer is the characteristic parameter after normaliza-

tion treatment, and the activation function of hidden layer 

and output layer is sigmoid function. Training samples 

are needed to train the neural network. After the training 

neural network meets the error requirements, the wear 

data can be analyzed by inputting test samples [7]. 
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Figure 3. Three-layer feed forward neural network 

structure 

Input the training sample data into the input layer of the 

neural network, and process the input sample data ac-

cording to the characteristic parameters in the input layer. 

Input the processing results into the hidden layer and the 

output layer, and output the trained data set after activa-

tion by the activation function sigmoid. Error test is car-

ried out on the data set after output. After the error test, if 

the error accuracy is 0.001, the training is completed. If 

the error accuracy does not meet 0.001, reset the initial 

parameters of the activation function and train again until 

the error meets the accuracy. After the training, the neu-

ral network needs to be tested with the test sample set. 

When the output value of the ith node in the output layer 

of neural network is greater than 0.99, and the output 

value of other nodes is less than 0.01, the wear state of 

this analysis is considered as the ith [8]. After the analy-

sis of friction and wear data, in order to avoid errors 

caused by single monitoring by neural network, D-S the-

ory was used for decision-making level monitoring, wear 

monitoring model parameters were set, and the friction 

and wear monitoring model of laser cladding high-

entropy alloys was established. 

2.3. Establish wear monitoring model 

After the training of the neural network, the parameters 

of each layer of the neural network are determined. After 

the test of the sample set, the output of the neural net-

work meets the precision of monitoring the wear of laser 

cladding high entropy alloys. In order to prevent errors 

caused by single neural network monitoring and improve 

monitoring accuracy, D-S theory is adopted to set model 

parameters. 

When function m:  2 0,1U   satisfies the   1
A U

m A


  

and   0m    conditions, m (A) is the basic probability 

assignment of A, indicating the precise trust degree of A. 

The trust function and truth-like function of A can be 

expressed as formula (5) and formula (6), bel (A) repre-

sents the sum of probability measures of all subsets of A, 

pl (A) represents the trust degree that does not deny A. If 

m (A) >0, A is called the focal element of trust function 

bel. Let m 
1A  and m 

2A  be the basic probabilities of une-

qual maximums and minimums in the wear errors. If, 
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So bel (A) is the judgment result,  
B U

m B


  is the pre-set 

threshold [9]. Taking the training error of neural network 

as an uncertain factor, the calculation formula is as fol-

lows: 
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Then the basic probability assignment of each focal ele-

ment is: 
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In formula (8),  iy A  is the output of each node of the 

neural network, and n is the number of output nodes of 

the neural network. After the basic probability assign-

ment is obtained, the probability assignment of different 

wear amounts is fused to improve the monitoring accura-

cy [10]. After setting the relevant parameters of the wear 

monitoring model according to the d-s theory, test the 

whole monitoring model with test samples again. When 

the output result of the model is better than the monitor-

ing error value originally set, it is concluded that the 

model can monitor the wear of laser cladding high entro-

py alloys. Thus, the establishment of friction and wear 

monitoring model of laser cladding high entropy alloys is 

completed. 

3. Model Performance Test Experiment 
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A piece of high entropy alloys cut by laser cladding is 

divided into two parts, and then two parts of high entropy 

alloys are divided into the same number of alloys blocks 

as the experimental object. The laser cladding high en-

tropy alloys of the same size were tribally treated by two 

friction and wear testing machines. The wear information 

of high entropy alloys was collected by laser sensor, and 

the friction and wear of high entropy alloys were moni-

tored by the monitoring model constructed in this paper 

and the traditional monitoring model respectively. Tak-

ing the traditional monitoring model as the control group 

and the monitoring model constructed in this paper as the 

experimental group, the accuracy of the two monitoring 

models in monitoring the wear of high-entropy alloys 

was verified by recording the monitoring data of the two 

monitoring models on the wear of high-entropy alloys. 

3.1. Experimental environment and procedures 

The experimental environment is shown in figure 4. The 

wear test was completed on the SFT-2M pin - disc fric-

tion and wear test machine. The parameters of the fric-

tion and wear testing machine were set as follows: speed 

of 500 r/min, load of 50 N, wear time of 20 min, wear 

linear velocity of 9.42m/min. The laser cladding high 

entropy alloy was fixed on the friction and wear test ma-

chine, and the laser sensor was placed in an appropriate 

position to monitor the wear of the alloy block. 

The wear amount of high entropy alloys is controlled by 

computer friction and wear testing machine. A laser sen-

sor was installed to monitor the friction wear of two high 

entropy alloys during the experiment. Under the condi-

tion that other experimental conditions remain unchanged, 

the two monitoring models simultaneously monitor the 

input wear quantity data and output the monitoring re-

sults. 

friction wear 

testing machine

high-entropy 

alloys

 
Figure 4. Experimental environment 

3.2. Experimental results 

The experimental results ignore the small errors caused 

by the differences between the two friction and wear test-

ing machines, and remove the experimental results with 

large errors in the experimental data. The comparison 

results of 10 times of wear monitoring of laser cladding 

high-entropy alloys by the two monitoring models are 

shown in table 1. 

 

Table 1. Comparison results of monitoring wear between the two models 

Serial number Actual wear /mm Wear was monitored in the experimental group /mm Control group monitoring wear /mm 

1 0.18 0.17 0.26 

2 0.20 0.25 0.29 

3 0.26 0.24 0.36 

4 0.28 0.27 0.34 

5 0.24 0.24 0.27 

6 0.25 0.21 0.29 

7 0.22 0.18 0.36 

8 0.18 0.23 0.34 

9 0.29 0.27 0.33 

10 0.16 0.19 0.36 

 

It can be analyzed from the comparison results of moni-

toring wear of the two models in table 1, the absolute 

error between the experimental group data and the actual 

value is 0.027, and the absolute error between the control 

group data and the actual value is 0.094. The average 

relative error of monitoring laser cladding high entropy 

alloys is 0.095. According to the comparative analysis of 

the data of the experimental group and the control group 

in the table, the data of the experimental group is obvi-

ously smaller than that of the control group, and is closer 

to the actual wear. From the perspective of error results, 

the absolute error of the experimental group is much 

smaller than that of the control group, and from the per-

spective of error value, the absolute error of the experi-

mental group is about one third of that of the control 

group, that is, the monitoring accuracy of the monitoring 

model constructed in this paper is about three times that 

of the traditional monitoring model. In conclusion, the 

accuracy of the friction and wear monitoring model of 

laser cladding high-entropy alloys constructed in this 

paper is higher than that of the traditional friction and 

wear monitoring model, which should be popularized. 

4. Conclusion 

In this paper, a monitoring model of laser cladding high 

entropy alloys friction and wear is established. The fric-

tion and wear data series of laser cladding noble alloys 

are processed by wavelet packet decomposition, and the 
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wear characteristics are extracted by FFT. The extracted 

characteristic parameters are taken as the parameters of 

the input layer of the neural network, and sigmoid func-

tion is used to activate the hidden layer and output layer. 

After training the neural network with training sample set, 

the output error accuracy is verified. After the output 

precision meets the requirements, the test sample data is 

input to the neural network to complete the test of the 

neural network. D-S theory is used to improve the moni-

toring accuracy of the monitoring model, determine the 

monitoring model parameters, and complete the model 

construction. Through the comparison with the tradition-

al monitoring model, the superiority of the monitoring 

model constructed in this paper is verified. 
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