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Abstract: In this paper, we describe a variant of the Inexact Newton method for solving the nonlinear equa-
tions. We make a study of a new nonmonotone inexact Newton method with a nonmonotone backtracking 
strategy. To decrease the computational complexity, the BFGS update formula is used to generate an approx-
imated matrix rather than a normal Jacobian matrix. Theoretical analysis indicates that the new method pre-
serves the global convergence under mild conditions. 
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1. Introduction  

Consider the following nonlinear system of equations: 
                      ( ) 0,F x  .nx R                              (1) 

where : n nF R R  is continuously differentiable. There 
are various methods to solve the problem (1), such as the 
Newton and the quasi-Newton methods [1-6], the spec-
tral method [7, 8], the trust-region-based methods [9-12]. 
Suppose that  F x  has a zero, then the nonlinear system 

(1) is equivalent to the following nonlinear unconstrained 
least-squares problem 

    21
min =

2
. . .n

f x F x

s t x R

：
                         (2) 

where .  denotes the Euclidean norm. 

The general iterative formula for (1) proceed as follows: 
given a point kx , find a descent direction kd , a suitable 

step length k  and construct the new point as follows: 

1 .k k k kx x d                            (3) 

The Newton’s method is a classical way for solving the 
nonlinear equations because it converges rapidly from 
any sufficiently good starting position. It has the follow-
ing form to get kd : 

   .k k kF x d F x                          (4) 

The main drawback of Newton’s method is that the direct 
computation of the Jacobian is computationally expen-
sive. This fact motivated the development of quasi-
Newton method. The quasi-Newton method is of the 
form 

 .k k kB d F x                         (5) 

where kB  is generated by the BFGS formula 

1 .
T T

k k k k k k
k k T T

k k k k k

B s s B y y
B B

s B s y s                     (6) 

where 1k k ks x x   and 1k k ky F F  . 

Similar with [13], we propose a new Inexact Newton 
method to substitute (5) with a condition on its residual: 

( )k k l k kB d F    .                        (7) 

where 
1

, 0,
2

k
k k

kF


      

, and 

   ( )
0 ( )

: max , 0 ,l k k j
j n k

F F k N 
    

      0 0 0 min 1 1, 0n and n k n k N with N      . 

As for computing a suitable k , after studying the me-

thods from [6,14-16], we make a study of the new in-
exact quasi-Newton method with a new nonmonotone 
backtracking strategy for solving the nonlinear equations. 
Actually, at the k th iteration of our algorithm, we com-
bine the method in [16] and the new nonmonotone tech-
nique proposed in [17] to obtain the step size k  , 

   2 T

k k k k k k kf x d R F x d     .             (8) 

where  0,1 2   is a constant and kd  is a solution of 

(7). 

   + 1-k k k kl kR f f  .                         (9) 

where 

    
 

0
max , 0,1,2,k jl k j m k

f f k 
               (10) 

   
     min max min max min

0 0, 0 ( ) min ( 1) 1, , 0,

, 0,1 , ,1 .k

m m k m k N N

for     

     

  
 

Because of no need to compute the Jacobian matrix 

 F x , the storage and workload are considerably 

saved. Furthermore, the nonmonotone technique can im-
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prove the iterative algorithm in optimization and accele-
rate the convergence process. 
The rest of this paper is organized as follows. In Section 
2, the new algorithm will be introduced. The conver-
gence analysis is investigated in Section 3. Finally, some 
conclusions are addressed in Section 4. 

2. Algorithm 

Now, we outline the proposed algorithm. 
Algorithm 2.1 
Initial: Choose a starting point 0

nx R , an initial sym-

metric positive definite matrix 0
n nB R  , and con-

stants    max0,1 , 0 1 2r   ， ， ，

   0 0 0m k n k   ， ， ，let : 0k  . 

Step 1: If kF   holds, stop; otherwise, go to step 2. 

Step2: Determine  max0,k  , Solve (7) to obtain kd . 

Step3: Let 2 31, , , ,k r r r  until (8) holds. 

Step 4: Update kB  by the BFGS update formula and en-

sure the update matrix 1kB   is positive definite. 

Step 5: Set : 1k k   and go to step 1. 
Remark Step 4 of Algorithm 2.1 can ensure that kB  is 

always positive definite. This means that (7) has a unique 
solution kd . By positive definiteness of kB , it is easy to 

obtain 0T
k kF d  . 

Also, we need the following standard hypothesis to com-
plete theoretical proof. 

(H1) Let the level set     0x f x f x    be bounded. 

(H2)  F x  is continuously differentiable on an open 

convex set 1  containing  ,  kF  is bounded. 

(H3) The Jacobian of  F x  is symmetric, bounded and 

positive definite on 1 , i.e., there exist positive constants 

0M m   such that 

  ,F x M x    .                  (11) 

and 

 2
, ,T nm d d F x d x d R     .           (12) 

(H4) kB  is a good approximation to kF , i.e., 

 k k k kF B d F                       (13) 

where 
1

0,
2


  
 

 is a small quantity. 

Considering (H4) and using the von Neumann lemma, 
we deduce that kB  is also bounded (see [15]). 

Lemma 2.1 Let (H1)-(H2) hold and the sequence  kx  is 

generated by Algorithm 2.1, then the sequence   l kf  is 

not monotonically increasing. Therefore the sequence 

  l kf  is convergent. 

Proof. Using the definition kR  and  l kf , we have 

           1 1k k k k k kl k l k l k l kR f f f f f          (14) 

This leads to 

  
 

     2 2 .

k k k

T T

k k k k k k kl k

f x d

R F x d f F x d



   

 

  
   (15) 

The preceding inequality and the descent condi-
tion 0T

k kF d  indicate that 

                            1k l kf f                               (16)  

On the other hand, from (10), we get 
                 

   
 

 
    1 1 11 0 1 0 1

k j k j kl k l kj m k j m k
f max f max f max f , f          

    

This fact together with (16) show that the sequence 

  l kf  is not monotonically increasing. (H1) and (H2) 

imply that 

( ) ( 1) ( ) 0. . : k n l k n l k l ks t n N f f f f f             . 

So  l kf  is convergent. 

Lemma 2.2 Suppose that the sequence  kx  is generated 

by Algorithm 2.1. Then, we have  
  1 1 0k kf R k N     .               (17) 

Proof. The proof is similar to Lemma 3.2 in [17]. 

3. Convergence Analysis 

This section gives some convergence results under some 
suitable conditions. 
Lemma 3.1 Suppose that (H1)-(H3) hold and the se-
quence  kx  is generated by Algorithm 2.1. Then we 

have 
                               kl kk k

lim f lim f x
 

 .                     (18) 

Proof. From (8), (10) and (14), for k N , we obtain  

         
       

         

1 1 1

2
1 1 1 1

2
1 1 11

.

l k l k l k l k

T
l k l k l k l k

T
l k l k l kl l k

f x f x d

R F d

f x F d







  

   

  

 

 

 
 

The preceding inequality together with Lemma 2.1, 
0K   and 0T

k kF d   imply that 

                         
2

1 1 1lim 0.T
l k l k l kk

F d   
                       (19)  

Based on (H1)-(H4), similar to Lemma 3.4 in [16], it is 
not difficult to deduce that there exist constants 

1 1 0M m   such that 

 
2 2

1 1 .T T
k k k k k k km d d B d F d M d          (20) 
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Using (20), we have
22 2

1
T

k k k k kF d m d   , for all 

k .This fact along with (19) suggest that 

                               1 1 0l k l kk
lim d  

                      (21) 

We now prove that 0k k
k
lim d


 . Let 

 2kl̂ l k N   . First, by induction, we show that, for 

any 1j  , we have 

                                 0ˆ ˆl k j l k jk
lim d

 
 .                   (22) 

and  
                           

     ˆ l kl k jk k
lim f x lim f x

 
 .                 (23)  

   If 1j  , since     kl̂ l k , the relation (22) directly 

follows from (21). The condition (22) indicates that 

    1
0ˆ ˆl k l k

x x


  .This fact along with the fact that 

 f x  is uniformly continuous on   imply that (23) 

holds, for 1j  . Now, we assume that (22) and (23) hold, 

for a given j . Then, using (8) and (14), we obtain 

          

        

2
ˆ ˆ ˆ ˆ ˆ1 1 1 1

2
ˆ ˆ ˆˆ 1 1 11

.

T

l k j l k j l k j l k j l k j

T

l k j l k j l k jl l k j

f x R F d

f x F d





        

      

 

   
   

Following the same arguments employed for deriving 
(21), we deduce 

                              1 1
0ˆ ˆl k j l k jk

lim d
   

  

This means that 

                             1
0ˆ ˆl k j l k jk

lim x x
  
   

This fact together with uniformly continuous property of 

 f x   on   and (23) indicate that 

                    1ˆ ˆ l kl k j l k jk k k
lim f x lim f x lim f x

    
     (24)  

Thus, we conclude that (22) and (23) hold for any 1j  . 

   On the other hand, for any k N , we have 

     

 

 

ˆ 1

ˆ ˆ ˆ1
1

l k k

k l k l k j l k j
j

x x d
 

  


    .                  (25) 

From definition of  l k , we have 

   ˆ 1 2 1 1l k k l k N k N         . Thus, (22) and 

(25) suggest  

   ˆ1lim 0k l kk
x x

  .                          (26) 

Since  f x  is uniformly continuous on   and (26),  

       ˆlim lim limk l kl kk k k
f x f x f x

  
  . 

The proof is complete. 

Lemma 3.2 Suppose that (H1)-(H3) hold and the se-
quence  kx  is generated by Algorithm 2.1. Then we 

have 

 lim limk k
k k

f x R
 

 .                       (27) 

Proof. By Lemma 2.2 and (14), we get 

 k k l kf R f  . 

This fact together with Lemma 3.1, we have 

 lim limk k
k k

f x R
 

 . Then the proof is complete. 

Lemma 3.3 Let (H4) hold. Then kd  is a descent direc-

tion of ( )f x  at kx , i.e.,  

    2
1

T

k k kf x d F    .                 (28) 

where  0,1 .   

Proof. By using (7), we get 

 
 

 
( )

2
.

T T
k k k k k

T
k k k k l k k

T T
k k k k k k k

f x d F F d

F F B d F

F F B d F F





  

      

    

    (29) 

Thus, together with (7), we have 

   
 
 

2T T T
k k k k k k k k k

T
k k k k k

T
k k k k k k

f x d F F F B d F

F F B d

F F B d F







     

     
     

 

It follows from (13) that 

   

   

2

2 2
1 = 1 .

T T
k k k k k k k k k

k k k

f x d F F B d F F

F F



  

       

    
 (30) 

where  = 0,1 .k      The proof is complete. 

Lemma 3.4 Let (H1)-(H4) hold. Suppose there exists a 
constant 3m , such that 3 ,k km F d  then Algorithm 

2.1 will produce iteration 1k k k kx x d    in a finite 

number of backtracking steps. 
Proof. From Lemma 3.8 in [18], we have that in a finite 
number of backtracking steps, k  must satisfy 

       2 2
.

T

k k k k k k k kF x d F x F x F x d      

By (20) and (30), we get 

     

 

 

 

2

2

2

2 2
31

2
1 3

1

1

1

1 .

T

k k k k k k

T
k k

k kT
k k

T
kk k

k

k

T
k k

k

F x F x d F

F d
F

F d

dF d

mm d

F d

m m

  

 

 

 

   

  

 

 

  (31) 

By 1k  , we have 
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       2
2 2

1 3 1 3

1 1 .
T T

T k k k k
k k k k k k

F d F d
F x F x d

m m m m
          (32) 

From Lemma 2.2, we get k kf R . So we get 

 

   2
2

1 3

1
1 .

2

k k k k

T
k k

k k k k k

f x d R

F d
f x d f

m m



  

  

   
 

Let 
 

2
1 3

11
0,min ,

2 2m m

 


         
, then we get the line 

search (8). Thus we conclude the result of this lemma. 
The proof is complete 
Lemma 3.4 shows that the line search technique (8) is 
reasonable, then Algorithm 2.1 is well defined. 
Theorem 3.1 Let  kx  be generated by Algorithm 2.1, 

and let (H1)-(H4) hold. Then, we have 
lim 0.k
k

F


                          (33) 

Proof. According to (8), (20) and Lemma 3.2, we get 

   2

22
1

T

k k k k k k k

k k

f x d R F x d

m d

  

 

  

 
            (34) 

This means
22lim 0k k

k
d


 . 

which implies that 
lim 0.kk




                               (35) 

or 
lim 0.k
k

d


                              (36) 

If equation (36) holds, from (7), we get  

   1 k k k k k k k k kl kF F F B d B d         . 

Since kB  is bounded and 1k  , then lim 0.k
k

F


  

From (8) and Lemma 2.2, for all large enough k , we 
have  

 
2

2
.

k
k k k

Tk k
k k k k k

f x d f
r

f x d R F x d
r r



 


   
 

     
 

       (37) 

Since 

 

.

Tk k k
k k k k k k

Tk k
k k k k

f x d f f x d o d
r r r

F F d o d
r r

  

 

          
   

     
 

  (38) 

Using this together with (37) and (31), we have 

2
0Tk k k

k k kF d o d
r r r

   


        
   

.       (39) 

Dividing (39) by k
kd

r


 and nothing that 

2
0k

r

 


   and 0T
k kF d  , we have  

lim 0
T

k k

k
k

F d

d
 .                         (40) 

By (20), we have  
lim 0k
k

d


                          (41) 

So lim 0k
k

F


  and the proof is complete. 

4. Conclusions 

An improved Inexact Newton method is proposed for 
solving the nonlinear equations in this paper, which use a 
new nonmonotone inexact Newton method and a new 
nonmonotone backtracking strategy. Under mild condi-
tions, we obtain the global convergence. But there are at 
least three issues that need further improvement: (i) The 
first issue which should be considered is the numerical 
experiments, the numerical results can demonstrate the 
efficiency of the new method. (ii) The second issue is the 
choice of the initial point. It is well known that the initial 
point plays an important role in an algorithm. (iii) The 
last important issue is that the proofs of the local conver-
gence need to be completed. All these topics will be the 
focus of future work. 
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