
HK.NCCP                                                       International Journal of Applied Mathematics and Soft Computing 
                                                                   Volume 4, Issue 4, December, 2018 

30 
 

Adaptive Cubic Regularization Methods 
for Solving Non-convex Multi-objective 

Optimization Problem  
Huanhuan Yang 

College of Mathematics and Information Science, Hebei University, Baoding, 071002, China  
 

Abstract: In this paper, we design an algorithm by adaptive cubic regularization methods for solving multi-
objective optimization problem. The regularization technique is based on the strategy of computing an ap-
proximate global minimizer of a cubic overestimator of the objective function. The new method can effective-
ly improve the iteration complexity. Theoretical analysis indicates the fact that the new method preserves the 
global convergence under some standard assumptions. 
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1. Introduction  

In this paper, we discuss the adaptive cubic regularization 
method about how to solve an unconstrained non-convex 
multi-objective problem, where a set of objective func-
tions must be minimized simultaneously. 
Actually, we consider the unconstrained optimization 
problem 

                            
 

n

min F x

x R
                            (1) 

Where         1 2, , ,
T

mF x F x F x F x  , 

  n
iF x : R R , 1 2i , , ,m  , and  iF x  is twice a 

continuously differentiable. At least one of  iF x  is a 

non-convex function.  
F  is twice continuously differentiable on nR , for 

nx R , denoted by   m nxF R    the Jacobian matrix 

of the vectorial function F  at x , denoted by 

 i
nF x R   the gradient vector of the scalar function 

iF  at x , and by  2 n n
iF x R    the Hessian matrix of 

iF  at x . Furthermore we can assume that there are posi-

tive definite. 
Definition 1.1 A point x X   is called Pareto optimal if 

there is no x X  such that  F( x ) F x , 

   F x F x . If x  is Pareto optimal, then  F x  is 

called efficient. 
Definition 1.2 A point x X   is called weakly Pareto 

optimal or weakly efficient, if there is no nx R such 

that    F x F x , where the vector strict inequality 

   F x F x  must be understood componentwise 

sense. 
The inequality sign   between vectors is to be unders-
tood in a componentwise sense. And means that search-
ing to minimize point in the partial order induced by the 
positive orthant mR . 

In [1], the Newton direction kd  defined as the optimal 

solution of 

     2

1

1

2n

T T
i i i

d R i , m

n

min max F x F x d d F x d

d R

 

       
 

 (2) 

Although (2) is a non-smooth problem, it can be framed 
as a convex quadratic optimization problem. Actually, 
the problem (2) is equivalent to  

     

 

21
0 1 2

2

T T
i i i

n

min t

F x F x d d F x d t ,i , , m,

t ,d R R



      

  

 (3) 

It is well known that many cubic regularization methods 
have been proposed to solve unconstrained optimization 
problems ([2-5]). In 2011, Coralia et al. proposed an 
adaptive cubic regularization method for unconstrained 
optimization [6]. At each iteration of that method, an 
approximate global minimizer of a local cubic regulariza-
tion of the objective function is determined. It can en-
sures a significant improvement of the objective function 
only if the Hessian of the objective function remains lo-
cally Lipschitz continuous. The proposed cubic model is 
as follows:  
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2 3
T T

k k k k km s f x s g s B s s          (4) 

Where  k kg f x  , 
2

   , k  is an adaptive para-

meter, kB  is symmetric approximation of the Hessian 

matrix.  
The adaptive cubic regularization method generates an 
approximate global minimum point of a local cubic regu-
larization objective function at each iteration, where the 
parameter k  is used to adjust the degree of approxima-

tion of the cubic model and the objective function. The 
algorithm has good convergence and numerical perfor-
mance in certain conditions; also it has better algorithmic 
complexity than the steepest descent method.  
Comparing the ARC algorithm with the trust region algo-
rithm, it is found that the trust region algorithm using the 
quadratic model for solve unconstrained optimization 
problem, while the ARC algorithm solves unconstrained 
optimization problem by cubic model. Furthermore, the 
ARC method and the trust-region algorithm also have 
some similarities. The adaptive regularization method 
uses adaptive parameters to realize the role of the trust 
region radius in the trust region algorithm (see [7] for 
reference), that is, if the new iteration point does not 
make the objective function sufficient decrease, the pa-
rameter k  will be decrease, otherwise, the parameter 

k  is increase. 

The outline of this paper is as follows. In Section 2, we 
describe the adaptive cubic regularization algorithm. In 
Section 3, we introduce the convergence analysis. Finally, 
some conclusions are given in Section 4. 

2. Adaptive Cubic Regularization Algorithm 

To solve the optimization problem (4), Gabriel et al. [8] 
proposed trust region algorithm and defined a quadratic 
model for each objective function. In Section 1, we intro-
duce adaptive cubic regularization method for single-
objective optimization problem. Here we generalize the 
adaptive cubic regularization method to the problem of 
multi-objective optimization. We present the new model 
as follows: 

        321 1

2 3
i T

k i k i k i k km d F x F x d d F x d d     (5) 

Where k  is an adaptive parameter, 
2

   . 

The actual reduction defined as    i k i k kF x F x d   and 

the predicted reduction defined as    i
i k k kF x m d . 

The ratio i
kr  defined by 

   
   

i k i k ki
k i

i k k k

F x F x d
r

F x m d

 



 

The new algorithm can be described as follows: 
Algorithm 2.1 

Given 0x ,  1 21 ,    1 20 1,     and 0 0,   set 

0k .  

Step 1. Compute  i kF x ,  If  xi kF    , stop. 

Otherwise, go to Step 2. 
Step 2. Compute kd ,  satisfying  

   i i c
k k k km d m d                          (6) 

Where the Pareto Cauchy point   

 c c
k k i kd F x         c i

k k i karg min m F x     

Step 3. Compute  i k kF x d  and 

   
   

i k i k ki
k i

i k k k

F x F x d
r

F x m d

 



 

Step 4. Set 1
1

i
k k k

k

k

x d if r , i.
x

x otherwise.




    


 

Step 5. Set 


 
 

2

1 1 1 2

1 2 1

0 i
k k

i
k k k k

i
k k k

if r ;

, if r ;

, if r ;

 

     

    


 
  
 

，

i.  

Step 6. Set 1k : k  , and go to Step 2. 

3. Global Convergence Analysis 

In this section, we introduce some convergence proper-
ties of the new algorithm, and prove the global conver-
gence.  
Here are some standard assumptions. 

(A1)  n mF R ,R , and  iF x  is lower bound. 

(A2) Suppose that there exist two positive constants 1  

and 2  such that   1iF x           2
2iF x    

(A3) For all k ,    0i
k i km F x ,    0i

k i km F x    

(A4) The matrix kH  is uniformly bounded, that is, there 

exists a constant 1umlk   such that, for all nx R , and 

for all k : 1k umlH k   

Lemma 3.1 Assumption the step kd  satisfies (6), then for 

0k  , we have 

       
2

6 2 1 2

1

1 26 2

i i c
i k k k i k k k

k

k k k

k k k

k k

F x m d F x m d

g

max B , g

g g g
min ,

B





  


  
 
 
  

             (7) 

Proof. From (6), we can see that the first inequality is 
true. Next, we prove the second inequality. 
For any 0  ，use the Cauchy-Schwartz inequality, we 
have  
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(8) 

According to      0i c i
k k i k km d F x m   and 0  , we 

get    2 21 1
1 0

2 3i k k i kF x F x         

The inequality (8) is equivalent to  0, k  , 

Where 

 
     

22 23 1 1 4

2 4 32
k i k i k k i k

k i k

F x F x F x
F x

 


 
         

 

We can define k  as 

     
1

22 21 1 4
2

2 4 3k i k i k k i kF x F x F x 


 
      

 
 

In addition, we also define k  as 
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2 1 2k i k k i kmax F x , F x 


     

The inequalities   
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And       1
1 2

2 i k i k k i kF x max F x , F x      

Hence, we obtain 0 k k   . We can combine k  with 

(8), we get  
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(9) 
According to definition of k , we have 

 2 1k i kF x    and  2 1k k i kF x    . Then,  
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6 2 1 2

i ki c
i k k k

i k k i k

F x
F x m d

max F x , F x


 

  
 

The proof is complete. 
Lemma 3.2 Suppose that (A2) hold, and the step kd  sa-

tisfies(6), for all 0k  , we 

have  1

3
k k k

k

d max , g 


 . 

Proof. From the definition of (5), we have  
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32
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2 3
1 1

2 3
1 2 1

9 9 2

i T T
k i k i k i k k

i k i k k

k i k k i k

m d F x d F x d F x d d

d F x d F x d

d d F x d d F x





 

     

     

           
   

 

If 
 

3 i k

k

F x
d




 , then  31
0

9 k i kd d F x    , 

while if 
 9

4
i k

k

F x
d




 , then 

 3 22 1
0

9 2k i kd d F x    . 

Hence, when  

    2
1

3 3
k i k k k k k

k k

d max F x , g max , g  
 

   , 

Then    i
k i km d F x . 

By (7), we get    i
k k i km d F x  and 

 1

3
k k k

k

d max , g 


 . 

The proof is the complete. 
Lemma 3.3 Let (A1) and (A2) hold, suppose that H  is 

an infinite index set, such that  i kF x   , for all 

k H  and some 0  , and 
 

0i k

k

F x




 , as 

k  , k H , then  
 

3 i k

k
k

F x
d




   for all 

k H  sufficiently large.  

Additionally, if *
kx x , as k H , k   for some 

* nx R , Then each iteration k H  that is sufficiently 
large is very successful, and 1k k    for all k I  suf-

ficiently large.            
Proof. A proof of this lemma can be observed in [6]. 
Lemma 3.4 Assume that (A1) and (A2) holds, and the 
sequence  kx  is generated by Algorithm 2.1, then the 

sequence   i kF x  is monotonically decreasing and con-

verges. 
Proof. See the proof of [10] for reference. 
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Theorem 3.1 Let (A1) and (A2) holds, suppose further-
more that there are only a finitely many successful itera-
tions. Then kx x , for all k  large enough and 

  0iF x  . 

Proof. A proof of this lemma can be observed in [9]. 
Theorem 3.2 Suppose that (A1) and (A2) hold. Then 

  0i k
k

liminf F x


  . 

Proof. Suppose that exists 0  , for all k , and 

1i ,m,   such that   i kF x                 

Let H  is the index set of successful iterations, using 

lemma 3.1, then 
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Then, adding all successful interactions up to the -k th  

index,
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Using lemma 3.3, we obtain
 

0i k

k

F x




      

k  , k H  

k  is the number of successful iterations. Then 

if k
k ,k H

lim 
 

   

From the theorem 3.1, we know that the conclusion is 
true. If k

k ,k H
lim 

 
      

Since  iF x  is monotonically decreasing, and  iF x  is 

bounded below. Then, we have  iF x  is convergent. 

Hence, it is contract with the  iF x . The proof is com-

pleted. 

4. Conclusions 

In this paper, we propose a new adaptive cubic regulari-
zation algorithm for multi-objective optimization prob-
lem. The new algorithm uses an adaptive estimation of 
the local Lipschitz constant, and an approximation of the 
global model minimization, which is computationally 
feasible even for large-scale problems. The aim is that of 
improving the computational efficiency of the cubic re-
gularization method preserving the global convergence. 
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