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Abstract: In this paper, we propose and analyze a new nonmonotone adaptive retrospective trust region me-
thod for unconstrained optimization problems. Actually, we incorporate a new proposed nonmonotone tech-
nology with the adaptive retrospective trust region method. Some properties of the new algorithm are ana-
lyzed. Theoretical analysis shows that the new proposed method has a global convergence under some mild 
conditions. 
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1. Introduction  

In this paper we consider the unconstrained minimization 
problem 

min ( )
nx R

f x


                          (1) 

where f  : nR R  is a twice continuously differentia-

ble function. 
For convenience, we use the following notation: 
1 .  is the Euclidean norm. 

2 ( ) ng x R  and ( ) n nH x R   are the gradient and Hes-

sian of f  at x  respectively. 

3  ( )k kf f x , ( )k kg g x , 2( ) ( )k k kH H x f x   , and 

kB  be a symmetric matrix approximation of kH . 

There are various methods to solve the problem (1) most 
of which are iterative methods that are either line search 
methods or trust region methods. It is well known that 
trust region method is a kind of important and efficient 
methods for nonlinear optimization. This method is based 
on the following idea: at each iterate kx , a trial step kd  

is usually computed by solving the quadratic sub-
problem: 

1
min ( ) ( ) ( )

2
. .

T T
k k k k

k

m d f x g x d d B d

s t d

  

 
       (2) 

its ratio defined by 

B k
k

k

Are d
r

Pre d
                         (3) 

Where ( ) ( )k k k kAre d f x f x d    is called the actual 

reduction and Pr (0) ( )k k k ke d m m d   is called the 

predicted reduction.  
 Because of their strong convergence and robustness, 
trust region methods have been studied by many authors 
[1–3] and some convergence properties are given in the 
literature [4-7]. 
 It notices that the radius k  in (2) is independent from 

any information about kg  and kB . These facts cause an 

increase in the number of sub-problems in some ques-
tions that need solving which decreases the efficiency of 
these methods. In order to reduce the number of sub-
problems that need solving, Shi and Guo proposed a trust 
region method which can automatically adjust the trust 
region radius in [8]. They choose  1, , 0,1u    , and kq  

to satisfy the following inequality 
T k
k

k k

g q

g q
                            (4)  

and set 

ˆ

T k
k

k T
k k k

g q
s

q B q
                            (5) 

in which ˆ
kB  is generated by the procedure: 

2ˆT T
k k k k k k kq B q q B q i q  , and i  is the smallest nonneg-

ative integer such that 
2ˆ 0T T

k k k k k k kq B q q B q i q                     (6) 

then, they proposed a new trust region radius as follows 

k k kq                                   (7) 
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where p
k ks   and p  is the smallest natural number 

such that 

1
B

kr u                                     (8) 

They proved that the new adaptive trust region method 
has global, superlinear and quadratic convergence prop-
erties and is a numerically efficient method. 
Recently, a retrospective trust region method has been 
proposed [9]. Its retrospective ratio is  

1
1 1

( ) ( )

(0) ( )
R k k k

k
k k k

f x f x d
r

m m d
 

 



                    (9) 

Moreover, the classical ratio B
kr  and the retrospective 

ratio 1
R

kr   are simultaneously used for updating the trust-

region radius. More precisely, B
kr  is used to accept or 

reject the trial step, while 1
R

kr   is employed for updating 

k  after each successful iteration. 

On the other hand, the monotone algorithm has a default 
that it may result to the slow iterative schemes for highly 
nonlinear or badly-scaled problems. To avoiding this 
limitation, the idea of nonmonotone strategies has been 
proposed to overcome the Martos effect for constrained 
optimization. More recently, Masoud Ahookhosh et al. 
present a novel nonmonotone term [10] 

                         
( )

max ,

l k

k
k k

f if k N
T

T f if k N

  
             (10) 

Where  

 ( )
0 ( )
maxl k k j

j m k
f f  

                    (11) 

(0) 0m  ,  ( ) min ( 1) 1,m k m k N   for nonnegative 

integer N . 
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  (12) 

0 0T f ,  0,1i   for 1,2, ,i k  . kT  is a convex 

combination of the collected function values kF  in [10]. 

This paper is organized as follows: In Section 2, we de-
scribe the new algorithm, in Section 3, we prove that the 
new algorithm is well defined, and then the global con-
vergence is investigated. Some conclusions are delivered 
in Section 4. 

2. The New Algorithm 

In this section, we will propose our new method. Before 
that, we first introduce a new nonmonotone ratio [11]. 

1 1(1 )NC NB NR
k k kr r r           min max, 0,1           (13) 

Where 

(1 ) ( )

(0) ( )
NB k k k k

k
k k k

T f x d
r

m m d
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Where kT  is given by (10) and 

0

0 0
k k

k
k

if T

if T





  

                       (16) 

where  k  is a positive sequence satisfying the follow-

ing condition: 

1
k

k

 




                           (17) 

Then we will introduce the updating of the radius k . 

For given 1 (0,1)  , if 1
NB

kr  , then we set 

1k k kx x d   , and update the radius by 

 1 1 maxmin ,k k     , where 

 
1 1 1 1 1

1
0 1 1 1 1 1min ,

NC
k k k k

k NC
k k k k k

s q if r

d s q if r

 
  

   


   

   


0 (0,1)    (18) 

and for 0 10 1     and 2 1( ,1)  ,  

        

 1 max 1 2

1 1 1 2

0 1 1

min , NC
k k

NC
k k k

NC
k k

if r

if r

if r

   
   

  



 



 
  
 

    (19) 

Otherwise, set 1k kx x   and shrink the radius by 

 1 0 1 1 1k k k k kmin d , s q      , where 1 0k k     

and 1kq   and 1ks   satisfy (4) and (5), respectively. In 

both cases, 1kB   is updated by a quasi-Newton formula. 

This procedure is repeated until the stopping criteria hold. 
Now we can propose the new algorithm. 
Algorithm 1 New nonmonotone adaptive retrospective 
trust region method  
Step 0: given 0

nx R , 1 20 1    , 00 1  , 

0 10 1    , min max0 1    , min max0 1    , 

0 0  , max 0  , min 0  , 0  ,  a symmetric matrix 

0
n nB R  , and a positive integer N , set 0k  . 

Step 1: Choose kq  so that (4) holds and compute ks  

from (5). If 0k  , then set  maxmin ,k k k ks q    

and go to Step 2. If 1 1
NB

kr   , then set 0 1k k    , and 

 0 1min ,k k k k kd s q   , and go to Step 2. Else, 

compute NR
kr  and NC

kr  by (15) and (13), respectively. 

Update k  using (19), and set  maxmin ,k k    , 

where k  is given by (18). 

Step 2: if kg  , then Stop. 
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Step 3: find kd  by (approximately) solving (2) and com-

pute NB
kr  by (14). 

Step 4: if 1
NB

kr   , then set 1k k kx x d   . Else, set 

1k kx x  . 

Step 5: Update 1kB   by a quasi-Newton formula. Set 

1k k  and go to Step 1. 

3. Convergence Analysis  

Throughout this paper, we use the following two index 
sets in our analysis 

 1: NB
kI k r   ,      1: NB

kJ k r    

We refer to the kth  iteration as a successful iteration 
when 1k k kx x d   , i.e., k I . 

In order to analyze the new algorithm, we consider the 
following assumptions: 
H1: For given   as in (17), the level set 

 0( ) ( )nL x R f x e f x    is closed and bounded and 

( )f x  is a twice continuously differentiable function over 

L . 
H2: kB  is uniformly bounded, i.e., there exists a positive 

constant M , so that kB M , for all k . 

Remark 1: Using Algorithm 2.6 in [12], one can approx-
imately solve the sub-problem (2), so that a sufficient 
reduction is achieved in the model function, i.e., 

Pr ( ) min , k
k k k

k

g
e d g

B


    
  

 

Where (0,1)   is a constant. 

Remark 2: using algorithm 1 in [10], we can obtain  

( )k k l kf T f      for all  0k N   

Theorem 3: suppose that  kx  is generated by algorithm 

1, when 0kT  , then the sequence ( )l kf  is decreasing. 

Proof. we consider two cases: 1) k I , 2) k J . In case 
1), if k I ,by the definition of I , we have 
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1

0
k K k kNB

k
k k k

T f x d
r u

m m d

  
 


 

   
   

     
   

     
   

1

1

11

0 0

1

0

k k kl kk K k k
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By the definition of 1 , we can have  

          
     

11 0 0

1 0

k k k k k kl k

k k kl k

f f x d u m m d

f f x d





     

    
 (20) 

Because 0kT  , by the equation (16), we have 

                             1k k kl kf f x d f                         (21) 

By the definition of kT , ( )l kf  and equation (21), if 

k N , we have  

   
 

 
 

    

1 11 0 1 0 1

1

k j k jl k j m k j m k

kl k l k

f max f max f

max f , f f

         



 

 
 

If k N , we have ( )m k k , since for any k , we have 

0kf f , it is clear that 0 ( )l kf f , the result holds. 

In case 2), if k J , by the definition of J , we can have 

1k kx x  , 1k kf f  , ( ) ( 1) ( )l k l k l kf f f  , so in both cas-

es, the result holds.  
Lemma 4: Suppose that the sequence  kx  be generated 

by algorithm 1, then we have  
2

( ) ( ) Pr ( )k k k k kf x f x d e d O d              (22) 

Proof. We can obtain the result by using Taylor’s expan-
sion and Assumption H2. 
Lemma 5: Let Assumptions H1 and H2 hold and  kx  be 

the sequence generated by Algorithm 1. Moreover, as-
sume that there exists a constant (0,1)  , so that 

kg  , for all k . Then, for every k , there exists a 

nonnegative integer p , so that 1k px    is a successful 

iteration point, i.e., k p I  . 

Proof. It is similar to lemma 4.2 in [11]. 
Lemma 6: For the sequence  kx , generated by Algo-

rithm 1, we have  kx L  

Proof. Assume that ix L , for all 1 2i , , ,k  , then we 

show 1kx L  . To do so, we consider two cases. 

In case 1, we assume k J , then we have 

   1k kf x f x  , using H1, the result obviously holds; 

in case 2, we assume k I , using remark 2, we can ob-

tain  1 1 0 01k k l kf T f f e f
       

So by the definition of L  and , we can obtain the result. 

  
Theorem 7: Let  kx  be the sequence generated by Al-

gorithm1. Then, we have: 

1 0
0

(1 )
k

k i k
i

f f  


        k I            (23) 

Where 1 min , k
k k k

k

g
g

B
 

    
  

 and   is the same 

constant as mentioned in Remark 1. 
Proof. Let k I , by the definition of I , we can have 
that 1k k kx x d   , using remark 1, we can have  
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1 1

1

(1 ) ( ) Pr

min , 0

k k k k

k
k k

k

T f x ed

g
g

B

 



  

     
  

              (24) 

without loss of generality, we assume that the first itera-
tion is a successful iteration. i.e., 0k  . Thus, using the 
definition of kT  and equation (24), we have 

1 0 0 0 0 0 0 0 0 0(1 ) (1 ) (1 )f T f f                        

By induction hypothesis, let (23) hold for 1 k I  , i.e., 

1 0 0
0 0

(1 ) (1 )
k k

k i k i
i i

f f f  
 

       

Due to lemma 5, there exists a positive integer p , so that 

p k  is a successful iteration. We show that (23) holds 

for k p I  , i.e., 

1 0
0

(1 )
k p

k p i k p
i

f f  


  


                   (25) 

For this purpose, because the iterations 
1, 2, , 1k k k p    are unsuccessful iterations, we 

have 1 2k k k pT T T     , using remark 2 and equa-

tion (24), and lemma 6 , we have  

1 1

( 1)

( 1) 1

0
0

(1 ) (1 )

(1 )

         (1 ) (1 )

k p k p k p k p k p k k p

k p l k k p

l k

k p i k p
i

f T T

f

f

   

 

  

       

  

 

 


     

  

   

    (26) 

By the definition of ( )l k  and equation (26), we can have  
1

1 0
0

0
0

(1 ) (1 )

(1 )

k p

k p k p i k p
i

k p

i k p
i

f f

f

  

 

 

   







   

  




 

The proof has been completed. 
Theorem 8: Let kq  be chosen so that (4) holds and 

lim 0
T
k k

k
k

g q

q
  . Then, we have lim 0k

k
g


  

Proof. See [11] for reference. 

4. Conclusions 

In this paper, a new retrospective trust region method for 
solving unconstrained optimization problems is proposed. 

Our approach employs an adaptive rule for updating the 
radius and a relaxed nonmonotone technique in its struc-
ture. As the nonmonotone strategies have shown their 
efficiency in the structure of optimization methods, we 
construct the nonmonotone versions of the classical and 
retrospective ratios according to the relaxed nonmono-
tone term. Besides, under some suitable and standard 
assumptions, we analyzed the properties of the algorithm 
and proved the global convergence theory. 
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