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Abstract: In recent years, cubic regularization algorithm for unconstrained optimization has been defined as 
alternative to trust-region and line search schemes. These regularization techniques are based on the strategy 
of computing an approximate global minimizer of a cubic overestimator of the objective function. It can ef-
fectively handle with some worst cases and improve the iteration complexity. In this work, we investigate a 
new approach which combines retrospective adaptive cubic regularization algorithm and some nonmonotone 
linesearch strategy. Under some standard assumptions, the global convergence properties are given. 
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1. Introduction  

We consider the unconstrained optimization problem 

                            
 

n

min f x

x R
                             (1) 

where f : nR R  is a continuously differentiable func-

tion. 
It is well known that many methods have been proposed 
which are based on a regularization technique using a 
cubic overestimator of the objective function (see, e.g. 
[1-6]). In 2011, an adaptive regularization framework 
using cubic (ARC) has been proposed in [1]. Specially, at 
each iteration kx , starting from the current point kx , the 

cubic model is 
                

      31 1

2 3
T T

k k k k km p f x p g x p B p p     (2) 

Where  kg x  is the gradient of f  computed at kx , kB  

is symmetric approximation of the Hessian matrix, 

k R   is an adaptive parameter. For the sake of sim-

plicity, we set  k kg x g ,  k kf x f . The trial step 

kp
 is computed as an approximate minimizer of  km p  

in equation (2) and must yield a decrement at least as 
good as that provided by a Cauchy point. 
Under certain conditions, first-order global convergence 
and second-order global convergence of the adaptive 
cubic regularization algorithm have been proved in [1], 
and find the solution to satisfy the second-order neces-
sary condition. Some iteration complexity properties and 

an iteration complexity bound based on the Cauchy con-
dition of the ARC is given in [7]. 
As we all know, trust region method is an effective me-
thod to solve the problem of unconstrained optimization 
and has been systematically introduced. In 2010, Bastin 
et al. proposed a retrospective trust-region method for 
unconstrained optimization [8]. On the basis of the basic 
trust region method, the backtracking technique is added 
to update the trust region radius, and the current iteration 
point is applied instead of the previous iteration point. 
The backtracking technology of retrospective trust region 
is an improvement in the idea of adaptive technology 
which is applied in the optimization process, especially in 
the noise objective function.  
By comparing the ARC algorithm with the trust region, it 
is found that the number of iterations and the number of 
function value iterations of ARC are both lower than that 
of the basic trust region methods in [1]. Based on the 
similarity of the adaptive regularization parameter updat-
ing and the radius updating of the trust-region method, 
Sun proposed a new method [9] that is combined the 
adaptive cubic regularization method with retrospective 
trust-region method for unconstrained optimization 
which provides some more promising computational 
results. Considering the well known merits of nonmono-
tone strategies, we introduce a hybrid method combing 
them with the current retrospective trust region methods.  
The rest outline of the paper is as follows: Section 2 pro-
poses the hybrid method and gives some explanations, 
and global convergence results are presented in Section 3. 
Finally, in section 4, we give some concluding remarks. 
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2. The Nonmonotone Retrospective Adap-
tive Cubic Regularization Algorithm 

Tommaso Bianconcini and Marco Sciandrone proposed 
the nonmonotone ARC algorithm (NMARC) [10]. They 
use nonmonotone line search techniques on the basis of 
the cubic regularization algorithm and assume kp  is a 

good descent direction which satisfies the following con-
ditions.  
Condition 2.1 There exist some constants 1c , 2 0c   

such that  
2

1

T
k k kg p c g                            (3) 

2k kp c g                              (4) 

In the case of    k k kf x p f x  , they perform a mo-

notone extrapolation phase (MEP) along kp  in order to 

attain a further reduction of the objective function. In the 
case of    k k kf x p f x  , a suitable nonmonotone 

accepting criterion is used.  
Algorithm MEP 
Given a ,  0 1,  , integer L , the current point kx , the 

direction kp  satisfying condition (2.1) and such that  

     Tk k k a k kf x p f x g x p                   (5) 

Set =1 , 0j  . 

If  

   Tk k k a k kf x p f x g x p
 
 

    
 

              (6) 

Then set 



 , 1j j  , otherwise set k   and 

exit. 
If j L  then go to step 2, otherwise set k   and exit. 

Set  

    
,

max
k M

jm k j S
f x f x


                         (7) 

where M N  and   ,k Mm k S  respectively, and ,k MS  

is the set of indexes of the last M  successful iterations 
before the kth . 
After specifically investigate the program in [9], we 
found there is logically wrong. That is they computed 
“ kp ” for twice and the second one is useless in the pro-

gram. Noticing that, we modify the above error and in-
troduce some non-monotone strategies in the new algo-
rithm. 
Here are the details. 
Algorithm 1:  
Step 1: Given 0x , 0 0  , 0k  , 10 1  , 

1 20 1     , 1 2 31      , 0, 0, 0a b c     , 

,L M N , 0  . 

Step 2: Compute kg , if kg  , then exit; otherwise, 

compute kp , satisfying 

   c
k k k km p m p                        (8) 

where c
k k kp g  ,  

arg min ( )k k k km g                        (9) 

Step 3: 
a) If kp  satisfies the condition 2.1 then  

(i) If      Tk k k a k kf x p f x g x p    

Then apply MEP to compute k  and go to step 4. 

(ii) If       T

k k a k km kf x p f x g x p    

Then set 1k   and go to step 4. 

(1.b) If     2

k k k b kf x f x p p    

Then set 1k   and go to step 4. 

c) If     2c
k k k c kf x f x p p    

Then set c
k kp p , 1k  ; otherwise 0k   and go to 

step 4. 
Step 4: compute  

    
   

1k k km k
k

k k k k

f x f x p if .a( ii ) is performed
Ared

f x f x p otherwise





   
 

  

   k k k kPr ed f x m p   

k
k

k

Ared
r

Pr ed



  

Set 1
1

k k k k
k

k

x p if r
x

x otherwise

 


 
 


,  k=k+1. 

Step 5:  if 1k kx x  , then choose  1 3 1,k k k     , 

otherwise compute 

      
   

   

1

1

1

1.

Pr 0

Pr

km k
k

k k

k k k k

k
k

k

f x f x if a ii is performed
Are d

f x f x otherwise

e d m p m

Are d
r

e d







  


  








 

 

Where   1m kf x   is defined by equation (7). 

Set  
 

   
 

1 2

1 1 1 1 2

1 1 2 1 1

0 k k

k k k k

k k k

, if r very successful iteration

, if r , successful iteration

, if r unsuccessful iteration

 
     

    



 

 

 
 
 


 


 

And go to step 2. 
Above is the whole program of the new retrospective 
adaptive cubic regularization algorithm using non-
monotone line search technique.  
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3. Convergence Theory 

We now investigate the convergence properties of the 
new algorithm, under some certain assumptions, the con-
vergence of the proposed algorithm is proved. 
A.1 k BB   for all k  and some 0B  . 

A.2 the gradient kg  is uniformly continuous on the se-

quence of iterates  kx . 

A.3 f  is bounded below and is uniformly continuous on 

the sequence  kx . 

Lemma 1 Suppose that the step kp  satisfies equation (8), 

then for all 0k  , we have that               

       
2

6 2 1 2

1

1 26 2

c
k k k k k k

k

k k k

k k k

k k

f x m p f x m p

g

max B , g

g g g
min ,

B





  


  
 
 
  

                 (10)                    

Proof. See the proof of [1, lemma 2.1]. 
Lemma 2 Suppose that A.1 holds, and the step kp  satis-

fies (8), then we have that 

                     3
k B k k

k

p max , g 


                   (11) 

Proof. See the proof of [1, lemma 2.2]. 

Lemma3 Assume  1 nf C R  and that A.1 holds, sup-

pose that I  is an infinite index set such that 0k   and 

 kg x   for all k I  and some 0  , and  

 
0

k

k

g x


  for k  , k I          (12) 

then 
 

3
k

k
k

g x
p


   for all k I  sufficiently large.       

(13) 
Additionally, if *

kx x , as k I , k   for some 
* nx R , Then each iteration k I  that is sufficiently 

large is very successful, and  

1k k    for all k I  sufficiently large.           (14) 

Proof. We can get 

k k
k k k

k k

g g
g g

 
     from 

0k

k

g


  for k I , k  , from the equation (11), 

we can obtain (13), and thus we proved the first part of 
the lemma. Next we prove the remainder of the lemma. 

Firstly, due to the definition of the (7) and kr , we ob-

serve that  
   
   

1

1 0
k k

k
k k k

f x f x
r

m p m







 
  

then, if 2kr    holds, we can obtain  

   
   

1
2

1 0
k k

k k k

f x f x

m p m







 
  

from lemma 1, we can know 

   1

1
0

1 26 2
k k k

k k k
k k

g g g
m p m min ,

B 

      
  

  (15) 

So we can get  
           

   
   
          

1 1
2

1

1 1 2 1

1
0

1 0 0

k k k

k k k

k k k k k k

m p f x

m p m

m p f x m m p





 



  

 
 

 

       




 

then we set  

          1 1 2 11 0k k k k k k km p f x m m p          (16) 

using equation (12), we obtain 

   

   

1

1

0
12 2

0
12 2

k k
k k k

k

k k
k k k

k

g g
m p m

g g
m m p









  

    

                (17) 

a sample Taylor expansion of  1kf x   around kx  gives 

that for each k , 

       
   

1 11

1

k k km k

T
k k k k

f x f x f x p

f x g p

 



   

 
 

for some  1k k kx ,x  , then  

    
   

    

    

1 1

1 1

3

1 1 1 1

1 1 1

1 1

2 3
1

2

k m k

k k k

T T
k k k k k k k k

T T
k k k k k k

m p f x

m p f x

g g x p p B p p

g g x p p B p

 



 

 

   

  

 

   

  

  

 

Using A.1 and equation (13), we obtain 

    
   

   

1 1

1 1

3
3

2

k k m k

k k k

k kB
k k

k k

m p f x

m p f x

g g
g g x




 

 

 

 

   

    
  

      (18) 
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for all Ik  sufficiently large. From equations (16), 
(17), (18), it follows 

   

   


  
    
 
  


2

3 3 1

2 36 2

k k

k

k
kB

k

k

g g x
g

g           (19) 

due to the continuity of the gradient, we conclude that  

    0k kg g x       for k I , k            (20) 

from equations (19), (20), (12), we obtain 0k   for all 

k I , k  . The inequality (14) now follows the in-
structions at step 5 of the new algorithm. 

Lemma 4 Assume that  1 nf C R  and that A.1 holds, 

suppose furthermore that there are only finitely many 
successful iterations. Then k *x x  for all sufficiently 

large k  and  * 0g x  . 

Proof. See the proof of [10, lemma 4.4]. 
Lemma 5 Assume that A.1 and A.3 hold, then the se-

quence   kf x  converges. 

Proof. See the proof of [10, proposition 4.5]. 
Lemma 6 Assume that A.1 and A.3 hold, then   
lim inf 0kk

g


  

Proof. See the proof of [10, theorem 4.6]. 
Theorem 7 Assume that A.1-A.3 hold. Then  

0k
k
lim g


  

Proof. See the proof of [10, theorem 4.7]. 

4. Conclusions 

In this paper, we present a new method. The proposed 
algorithm is based on the idea of modifying the length of 
the step obtained using the cubic overstimating model 
and on the employment of a nonmonotone accepting cri-
terion. The aim was that of improving the computational 
efficiency of the retrospective cubic regularization me-
thod preserving the global convergence. Recently, the 
adaptive cubic regularization algorithm is generalized to 
solve linear least-squares problems and nonlinear con-

strained optimization problems [11], and the convergence 
analyses are given and good numerical results are ob-
tained. To solve the constrained optimization problem 
with adaptive cubic regularizations still to be further stu-
died. 
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