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Abstract: In this paper, we compare the differences of non-monotone strategies to solve the wedge trust re-
gion method for derivative-free optimization. The non-monotone method is effective to resolve the trust re-
gion algorithm, and the wedge trust region method is projected for derivative-free problems. We combined 
the non-monotone strategy into wedge trust region methods, and the computational results showed that the 
two strategies have their respective advantages and disadvantages. 
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1. Introduction 
In this paper, we consider the unconstrained optimization 
problem min ( ), nf x x R where the objective function 

( )f x is a smooth function from nR to R , ( )f x∇  and 
2 ( )f x∇ are not available for any x .  

In 1994, Powell [1] first proposed a derivative-free opti-
mization method that used interpolation to approximate 
the objective and the constraints. The trust region inter-
polation models have the following form: 

( ) ( ) ( )1/ 2T T
k k k k km x s f x g s s G s+ = + + , 

where n
kg R∈ is a vector of nR ; kG is a square symme-

tric matrix of dimension n . Since the gradient and Hes-
sian matrix of the objective can't be calculated, we de-
mand ( ) ( )k km y f y= for each vector y in a set 

{ }0 1 1, , , pI y y y −= K . The cardinality of I must be equal 

to ( ) (n 1)(n 2)1/ 2p = + + and parameter p and the interpo-
lation points set I must be poised with the purpose of 
ensuring the uniqueness and existence of the quadratic 
model [2, 3]. When the model km  is determined by the 
above conditions, the interpolation set is nonsingular. 
The wedge trust region method is firstly proposed by 
Marazzi in his dissertation [4]. Firstly, we define outly as 
the point to be replaced at the k-th iteration which is the 
farthest one from the current iteration center kx . Then, 
we define the “taboo region” kT  [5, 6] in nR . The wedge 
contain is added to the trust region sub-problem:  

min ( s)

. .
.

k ks

k

k

m x

s t s
s W

+

≤ ∆

∉

 

In 1986, Grippo et al. [7] proposed a non-monotone 
strategy, and the general non-monotone form is as 

 ( ) ( )
0 ( )

( ) max , 0, 1, 2,...,l k l k k j
j m k

f f x f k
 

   where 

0 0m = , 
0M ≥ and { }10 min 1, ( 1)k km m M k−≤ ≤ + ≥  is an integer. 

The sequence { }( )kf x is non-increasing. Since then, the 
non-monotone technique has been exploited by many 
researchers [8, 9]. 
In 2008, Gu and Mo [10] introduced another non-
monotone strategy. They replaced ( )l kf with 

1

( )
.

( ) D
k

k

k k

f x

f x
η

−

=
−

 

This non-monotone technique is robust which is showed 
by numerical experiments in [10, 11]. Ahookhosh et al. 
in [12] proposed a new non-monotone technique. They 
define ( ) (1 ) ,k k l k k kR f fη η= + −  [ ) [ ]min max min0,1 , ,1 ,η η η∈ ∈  
This non-monotone technique is efficient and robust 
which is showed by numerical experiments in [12]. 
These two kinds of nonmonotone methods have their adv
antes and disadvantages respectively in dealing with opti
mization problems. In the present paper, we compar-e 
the wedge trust region method and two non-monotone 
techniques respectively. Our numerical results show that 
one can find a better method to solve the wedge trust 
region problems for using non-monotone strategy. 
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The rest of this paper is organized as follow. In section 2, 
the non-monotone strategies for wedge trust region will 
be established, and the algorithm analysis is interpreted. 
Numerical results are proved in section 3 which is indi-
cated that the new methods have a lot of differences for 
unconstrained optimization problems. Some conclusions 
are given in section 4. 

2. The Non-monotone Wedge Trust Region 
Algorithm 
Step 1. Set the trial parameters, an initial trust region 
radius 0k∆ > , and an initial guess 0x . The interpolation 

set k kY x I= ∪ , { }1 2, , , mI y y y= L , and it such that 

( ) ( )kf x f y y I≤ ∀ ∈ . 
Step 2. According to the current iteration point kx , com-

pute arg maxoutl
y I ky y x∈= − . 

Step 3. Construction quadratic model km  and define the 
wedge constraint kW . 
Step 4. Solve the sub-problem and compute the trial step 

ks , and calculate 
( ) ( ) ( s )

Pr ( ) (0) m (s )
,k k k k

k
k k k

Ared d f x f x
r

ed d m
− +

= =
−
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,k k k
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k k
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Step 5. Update the trust region radius k∆ with the follow-
ing: 
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Step 6. Update the interpolation set and the iteration 
point, if it is a successful iteration, that is 

1kr α> , then 

1k kx x s+ = + , { } { }/ outl
kY x I y= ∪ . 

Else it is a unsuccessful iteration, that is to say 1kr α< , 
then 1k kx x+ = ,  

{ } { }/ , ( )

,otherwise.

out outl l
k k k kx s I y if y x x s x

Y
Y

 + ∪ − ≥ + −= 


 

Step 7. 1k k= + , go to step 2. 

3. Numerical Results 
In this section, we compare the quadratic version of the 

lga with the c lg . The non-monotone strategy in lga  
is

kR and the method in c lg is
kD . The source code for al-

gorithm is in [13], and we select 23 trial problems. In the 
Table 1, we define n is the dimension of the objective 

function, and nf is the calculative times, f is the optimal 
point, and the  wed act represents the number of wedge 
constraints play a role. The final value of parameter 

0.4γ = is a parameter used to control the space of “ta-
boo region”. The parameters in our algorithms are taken 
as follow, 1 0.01α = , 2 0.95α = , 3 1.05α = , 1 0.5β = , 

2 2β = , 3 1.01β = , 4 0.8β = . 
 

Table 1. The Computational Result 
(about nf and f ) 

n p 
nf  f  

lgc  lga  lgc  lga  

2 BROWNBS 45 40 9.89E+11 9.90E+11 

10 HIMMELBB 154 159 1.57E-09 4.82E-05 

2 HIMMELBH 65 154 -1.0000 -0.9967 

2 BEALE 153 158 2.33E-09 1.96E-04 

4 ALLINTU 109 167 5.74E+00 5.82E+00 

6 BIGGS6 543 157 1.05E-07 5.95E-01 

2 ENGVAL1 160 204 3.32E-04 4.80E-02 

2 HAIRY 91 129 2.00E+01 4.65E+02 

2 HIMMELBG 91 154 0.00E+00 5.40E-05 

2 FREUROTH 87 174 4.90E+01 4.90E+01 

5 GENHUMPS 220 226 1.05E-01 6.15E+04 

3 HATFLDD 112 164 2.34E-06 3.69E-01 

3 PFIT1LS 301 180 2.00E+02 2.36E+02 

4 WOODS 409 175 1.23E-30 3.68E+02 

5 OBSORNEA 206 176 8.11E-05 1.42E-01 

6 HEART6LS 378 182 4.22E-01 1,80E+02 

2 CLIFF 38 162 2.00E-01 2.06E-01 

2 DENSCHNA 163 167 2.30E-03 1.27E-08 

2 SINEVAI 245 258 1.53E-41 1.15E+00 

15 ARWHEAD 501 315 2.19E-13 8.18E+00 

2 SISSER 134 186 5.21E-08 3.08E-06 

3 BARD 134 180 8.20E-03 4.72E-02 

2 JENSMP 90 170 1.24E+02 1.30E+02 

 
Table 2. The Computational Result 

(about  wed act and   final γ ) 

n p 
 wed act    final γ  

lgc  lga  lgc  lga  

2 BROWNBS 5 5 1.40E-05 1.41E-05 

10 HIMMELBB 19 9 3.75-05 2.30E-03 

2 HIMMELBH 25 6 1.85E-14 8.57E-04 

2 BEALE 9 4 8.88E-06 4.37E-04 

4 ALLINTU 38 2 6.85E-16 1.39E-02 
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6 BIGGS6 20 3 1.68E-07 1.01E-02 

2 ENGVAL1 7 7 1.10E-03 2.60E-03 

2 HAIRY 14 1 4.42E-11 6.80E-03 

2 HIMMELBG 65 6 1.6E-154 8.71EE-04 

2 FREUROTH 26 7 1.36E-15 5.29E-05 

5 GENHUMPS 9 8 9.38E-04 8.28E-05 

3 HATFLDD 8 2 4.81E-06 5.40E-03 

3 PFIT1LS 12 6 1.36E-05 1.70E-03 

4 WOODS 23 2 1.11E-06 2.49E-02 

5 OBSORNEA 13 6 1.43E-07 2.71E-05 

6 HEART6LS 9 3 1.69E-05 8.30E-03 

2 CLIFF 10 3 9.60E-07 4.20E-03 

2 DENSCHNA 29 5 6.23E-05 4.60E-03 

2 SINEVAI 18 7 2.80E-18 1.75E-04 

15 ARWHEAD 19 4 3.01E-09 2.70E-03 

2 SISSER 9 9 7.27E-04 2.20E-04 

3 BARD 23 6 7.76E-17 5.40E-03 

2 JENSMP 33 9 1.00E-15 1.37E-04 

 
According to the Table1 and 2: Firstly, we can see that 
clg  is better than lga  for nf , and the numbers of wins 
are 2 and 1. Respectively, for the wedge constraint γ , 

lga is very more active than c lg although some num-
bers of function evaluations are the same. In addition, the 
result show that the lga is better than c lg when we must 
iterate many times for finding the optimal point. Second-
ly, we give some examples to carefully describe the dif-
ference between them. The numbers of nf  wins are 109 
and 167 in the problem “ALLINITU”, but γ of lga is 
more active than c lg . To the problem “ARWHEAD”, 
the γ is the same as the problem “ALLINITU”, but the 
nf of c lg  is more than the other. In spite of the f is very 
small in thec lg , it would waste so much time when the 
initial value is very large. 

4 . Conclusions 
In this paper, we compared the difference of two non-
monotone strategies to solve the wedge trust region me-
thod for derivative-free optimization. The results of nu-
merical texts show that the two methods have their rela-
tive merit and demerit. In general, we can make a deci-
sion from the two strategies when the dimension of the 

initial is different. We will learn and seek more new effi-
cient methods to solve the derivative-free unconstrained 
optimization problem. 
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