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Abstract: In this paper, we compare the differences of non-monotone strategies to solve the wedge trust re-
gion method for derivative-free optimization. The non-monotone method is effective to resolve the trust re-
gion agorithm, and the wedge trust region method is projected for derivative-free problems. We combined
the non-monotone strategy into wedge trust region methods, and the computational results showed that the
two strategies have their respective advantages and disadvantages.
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1. Introduction

In this paper, we consider the unconstrained optimization
problem min f(x), xe& R"where the objective function

f(x) is a smooth function from R'to R, KNf(x) and

N?f (x) are not available for any x.

In 1994, Powell [1] first proposed a derivative-free opti-
mization method that used interpolation to approximate
the objective and the constraints. The trust region inter-
polation models have the following form:

m (% +s)=f(x)+g/s+(1/2)s'Gs,

where g, T R"is a vector of R"; G, is a square symme-
tric matrix of dimension n. Since the gradient and Hes-
sian matrix of the objective can't be calculated, we de-
mand m(y,)=f(y,) for each vector y in a set

I ={y’.y".K.y**} . The cardinality of | must be equal
to p =(1/2)(n+1)(n+2) and parameter p and the interpo-
lation points set | must be poised with the purpose of
ensuring the uniqueness and existence of the quadratic
model [2, 3]. When the model m, is determined by the
above conditions, the interpolation set is nonsingular.

The wedge trust region method is firstly proposed by
Marazzi in his dissertation [4]. Firstly, we define y'- as
the point to be replaced at the k-th iteration which is the
farthest one from the current iteration center x . Then,
we define the “taboo region” T, [5, 6] in R". The wedge
contain is added to the trust region sub-problem:

minm(x, +9)

st]s|£D,

sl W,.
In 1986, Grippo et a. [7] proposed a non-monotone
strategy, and the genera non-monotone form is as
foo = T(Xe)= max {f_}, k=012.., where

0<j<m(k)
m, =0,
M2 0and 0£m £min{m_, +1LM} (k2 1) is an integer.
The sequence { f(x,)} is non-increasing. Since then, the
non-monotone technique has been exploited by many
researchers[8, 9.
In 2008, Gu and Mo [10] introduced another non-
monotone strategy. They replaced f, ,, with

f(x)

f(x)-D,,
This non-monotone technique is robust which is showed
by numerical experiments in [10, 11]. Ahookhosh et al.
in [12] proposed a new non-monotone technique. They
define R =hf, +@-h)f,  h, T[01)h_T[h,. .1,
This non-monotone technique is efficient and robust
which is showed by numerical experimentsin [12].
These two kinds of nonmonotone methods have their adv
antes and disadvantages respectively in dealing with opti
mization problems. In the present paper, we compar-e
the wedge trust region method and two non-monotone
techniques respectively. Our numerical results show that
one can find a better method to solve the wedge trust
region problems for using non-monotone strategy.
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Therest of this paper is organized as follow. In section 2,
the non-monotone strategies for wedge trust region will
be established, and the agorithm analysis is interpreted.
Numerical results are proved in section 3 which is indi-
cated that the new methods have a lot of differences for
unconstrained optimization problems. Some conclusions
are givenin section 4.

2. The Non-monotone Wedge Trust Region
Algorithm

Step 1. Set the trial parameters, an initial trust region
radius D, >0, and an initial guess x,. The interpolation
sty =x El, 1 ={y,y L.y} anditsuchthat
f)EF(Y)yT 1

Step 2. According to the current iteration point X, , com-
pute y' =argmax,;, |y- x|

Step 3. Construction quadratic model m, and define the
wedge constraint W, .

Step 4. Solve the sub-problem and compute the trial step
S, » and calculate

[ = Ared(d,) _ f(x)- f(x +s,)

k

Pred(d,) m(0)- m,(s,)
—_R-f(x*s) —_D.- f(x+s)
ComO)-m(@) " mO0)- ms,)
Step 5. Update the trust region radius D, with the follow-

ing:

ib,[s].r<a,h¥ >a;

ibls]r <a, AT £a,;
D., =iD.a, £r, <a,;

:::szk,aZ Er fa,;

fbD,.r, >a,.
Step 6. Update the interpolation set and the iteration
point, if it is a successful iteration, that is r >a,, then
Xen =X +S, v={x}E1/{y~}"
Else it is a unsuccessful iteration, that is to say T, <a,,

then x, =x,

Y:?{X”S}E”{y'“}'ﬂ
1Y,otherwise.

Step 7. k=k+1, gotostep 2.

Y- %2 (% +9)- x|

3. Numerical Results

In this section, we compare the quadratic version of the
alg with the clg . The non-monotone strategy in alg
isR and the method inclgisp, . The source code for al-

gorithm isin [13], and we select 23 trial problems. In the
Table 1, we defineNis the dimension of the objective

function, and nf is the calculative times, f is the optimal

point, and thewed act represents the number of wedge
constraints play a role. The final value of parameter
g =0.4is a parameter used to control the space of “ta-
boo region”. The parameters in our algorithms are taken
as follow, a, =0.01,a,=0.95, a, =105, b, =05,
b,=2, b,=101, b, =0.8.

Table 1. The Computational Result
(about nf and )

nf f
. P clg [ alg | clg alg
2 | BROWNBS 45 40 9.89E+11 9.90E+11
10 | HIMMELBB | 154 159 1.57E-09 4.82E-05
2 | HIMMELBH 65 154 -1.0000 -0.9967
2 BEALE 153 158 2.33E-09 1.96E-04
4 ALLINTU 109 167 | 5.74E+00 5.82E+00
6 BIGGS6 543 157 | 1.05E-07 5.95E-01
2 ENGVAL1 160 204 | 3.32E-04 4.80E-02
2 HAIRY 91 129 2.00E+01 4.65E+02
2 | HIMMELBG 91 154 | 0.00E+00 5.40E-05
2 | FREUROTH 87 174 | 4.90E+01 4.90E+01
5 | GENHUMPS | 220 226 1.05E-01 6.15E+04
3 HATFLDD 112 164 2.34E-06 3.69E-01
3 PFITILS 301 | 180 | 2.00E+02 2.36E+02
4 WOODS 409 175 1.23E-30 3.68E+02
5 | OBSORNEA | 206 176 8.11E-05 1.42E-01
6 | HEART6LS | 378 182 4.22E-01 1,80E+02
2 CLIFF 38 162 2.00E-01 2.06E-01
2 DENSCHNA 163 167 2.30E-03 1.27E-08
2 SINEVAI 245 258 1.53E-41 1.15E+00
15 ARWHEAD 501 315 2.19E-13 8.18E+00
2 SISSER 134 186 5.21E-08 3.08E-06
3 BARD 134 180 8.20E-03 4.72E-02
2 JENSMP 90 170 | 1.24E+402 1.30E+02
Table 2. The Computational Result
(about wed actand final g)
wed act fina g
n p
clg | alg clg alg

2 | BROWNBS 5 5 1.40E-05 1.41E-05
10 | HIMMELBB 19 9 3.75-05 2.30E-03
2 | HIMMELBH 25 6 1.85E-14 8.57E-04
2 BEALE 9 4 8.88E-06 4.37E-04
4 ALLINTU 38 2 6.85E-16 1.39E-02
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6 BIGGS6 20 3 1.68E-07 1.01E-02
2 ENGVAL1 7 7 1.10E-03 2.60E-03
2 HAIRY 14 1 4.42E-11 6.80E-03
2 HIMMELBG 65 6 1.6E-154 8.71EE-04
2 FREUROTH 26 7 1.36E-15 5.29E-05
5 GENHUMPS 9 8 9.38E-04 8.28E-05
3 HATFLDD 8 2 4.81E-06 5.40E-03
3 PAITILS 12 6 1.36E-05 1.70E-03
4 WOODS 23 2 1.11E-06 2.49E-02
5 OBSORNEA 13 6 1.43E-07 2.71E-05
6 HEART6LS 9 3 1.69E-05 8.30E-03
2 CLIFF 10 3 9.60E-07 4.20E-03
2 DENSCHNA 29 5 6.23E-05 4.60E-03
2 SINEVAI 18 7 2.80E-18 1.75E-04
15 ARWHEAD 19 4 3.01E-09 2.70E-03
2 SISSER 9 9 7.27E-04 2.20E-04
3 BARD 23 6 7.76E-17 5.40E-03
2 JENSMP 33 9 1.00E-15 1.37E-04

According to the Tablel and 2: Firstly, we can see that
clg is better than alg for nf , and the numbers of wins

are 2 and 1. Regpectively, for the wedge constraint g,

algis very more active than clg although some num-
bers of function evaluations are the same. In addition, the
result show that thealg s better than Clg when we must

iterate many times for finding the optimal point. Second-
ly, we give some examples to carefully describe the dif-

ference between them. The numbers of Nf wins are 109
and 167 in the problem “ALLINITU”, but g of algis

more active than Clg . To the problem “ARWHEAD”,
the g is the same as the problem “ALLINITU”, but the

nf of clg is more than the other. In spite of the f is very
small in theclg, it would waste so much time when the
initial valueisvery large.

4 . Conclusions

In this paper, we compared the difference of two non-
monotone strategies to solve the wedge trust region me-
thod for derivative-free optimization. The results of nu-
merical texts show that the two methods have their rela-
tive merit and demerit. In general, we can make a deci-
sion from the two strategies when the dimension of the

initial is different. We will learn and seek more new effi-
cient methods to solve the derivative-free unconstrained
optimization problem.
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