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Abstract: Support vector machines (SVMs) are currently widely used machine learning techniques. SVM is 
used to construct an optimal hyper-plane that implies an extraordinary generalization capability and good per-
formances. So far, SVMs have already been successfully applied to many real fields. In view of the difficul-
ties in kernel selection and sensitivity to noise, we propose fuzzy rough set membership based fuzzy multiple 
kernel support vector machine in this paper. The membership degree generalized by fuzzy rough set is intro-
duced to fuzzy multiple kernel support vector machine. It not only avoids the problem of kernel selection, but 
also improves the robustness to noise. The experimental simulation also validates the feasibility and effec-
tiveness of the method. 
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1. Introduction 
Support Vector Machine proposed by Vapnik et al. in 
1995 is a machine learning algorithm based on statistical 
learning theory [1,2]. It can improve the generalization 
ability of the learning machine with the principle of mi-
nimizing structural risk [2,3] as well as achieve the mi-
nimization of empirical risk and confidence range, which 
can obtain a good statistical rule in the case of less statis-
tical samples. Support vector machine has been applied 
in many fields, such as text classification, speech recog-
nition, emotional analysis and regression analysis [4-6] 
since it is a powerful tool for solving the problems of 
small sample, nonlinear, high dimension, etc. 
However, SVM is sensitive to noise points and outliers. 
In order to solve this problem, Lin et al. put forward the 
concept of Fuzzy Support Vector Machine (FSVM) [7, 8]. 
In other words, which introduced the fuzzy membership 
into the support vector machine as weight of every sam-
ple. FSVM decreases the effect of the noise, improves 
the classification accuracy. Nowadays FSVM has been 
applied in many fields including risk prediction, fault 
diagnosis, handwritten string recognition, etc [9-11]. 
It is very important for SVM to select kernel function. 
However, there are no general methods to complete this 
work. In recent years, multiple kernel learning (MKL) 
[12-15] which is an important achievement of the kernel 
method has become a research hot topic in the field of 
machine learning. Different kernel functions correspond 
to different similarity expressions. A single kernel func-
tion often cannot adequately describe the similarity be-

tween the data, especially the similarity between complex 
data. Hence, the combination of multiple kernels can 
character the similarity of the data more accurately, and 
can avoid the problem of kernel function selection. 
In this paper, motivated by FSVM and MKL, we propose 
a fuzzy multiple kernel support vector machine based on 
fuzzy rough set membership to overcome problem of 
kernel function selection and sensitivity to noise. Mem-
bership evaluated by fuzzy rough set is introduced into 
multiple kernel support vector machines. Experiments 
show that the proposed fuzzy multiple kernel SVM 
(FMKSVM) has better performance than the classical 
SVM, FSVM and multiple kernel SVM (MKSVM).   
The following contents are arranged as follows. Section 
II briefly reviews some basic notations and definitions in 
SVM and MKL. Fuzzy multiple kernel SVM based on 
fuzzy rough set membership is introduced in Section III. 
The experimental simulation will be given in t Section IV. 
Finally, Section V concludes the whole paper. 

2. Preliminaries 
In this section, we will first review the basic contents of 
SVM, FSVM [1,2,3,7,8,16]. We will then recall the re-
lated contents of MKL [12-15,17,18]. 

2.1. SVM and FSVM 

For a dataset ( ) ( ) ( ){ }1 1 2 2, , , , , ,l lT x y x y x y= L  , nx R∈  

and { }1,1iy ∈ −  for 1,2, ,i l= L . SVM aims to get the 
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optimal separating hyperplane ( )f x x bωΤ= + , which 
can not only classify the data correctly into two catego-
ries, but also maximize the margin between two classes. 
Where ω  is the weight vector and b R∈  is the threshold 
value. According to the principle of structural risk mini-
mization, the procedure of searching the optimal hyper-
plane can be summarized as the following optimization 
problem 
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where iξ  is the error term, C  determines the trade-off 
between margin maximization and training error minimi-
zation. 
Using the Lagrange multiplier method transform the 
above optimization problem into the following duality 
problem [1,3]: 
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iα  is the Lagrange multiplier of the sample point ix , 
⋅ ⋅，  is the inner product. The decision function 
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∑  can be obtained. 

For the nonlinear separable data, by introducing the error 
term iξ , one can obtain separating hyperplane, but can-
not classify all samples correctly.  
So SVM was extended to the feature space [1,3]. 
Through some nonlinear mapping : nR HΦ → , all pat-
terns ix  are projected from original space to high dimen-
sion feather space. Without any knowledge of the map-
ping, the optimal separating hyperplane is construct by 
using the dot product function in the feature space. The 
dot function is usually called a kernel function. Accord-
ing to Hilbert-Schmidt theorem [2,3], there exists a rela-
tionship between the original space and its feature space 
for the dot product of two points. That is 

( ) ( )( , ) ,i j i jk x x x x= Φ Φ                          (3) 

( , )i jk x x  is conventionally called a kernel function satis-
fying the Mercer theorem [2]. Replacing the inner prod-
uct ,i jx x  in (1) and (2) with ( , )i jk x x , the optimal 
separating hyperplane becomes the following form: 

1
( ) sign( ( , )+ )l

i i ii
f x y k x x bα

=
= ∑                     (4) 

In uncertain environment, it is difficult for SVM to ob-
tain a satisfactory decision function because data is often 

disturbed by various factors such as noise. To improve 
robustness of SVM, in 2002, Liu put forward that a train-
ing sample can be assigned a smaller membership degree 
which can be introduced into the SVM optimization 
problem model (1-2) when the training sample is identi-
fied as a wild point. This kind of SVM is called fuzzy 
SVM (FSVM) [7,8,16] which corresponds to the follow-
ing optimization problem: 
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where is  is the membership generalized by some outlier 
detecting method, It is clear that is  plays a weighting 
role on the iξ  in the objective function, so that the noise 
and outliers have a smaller influence on the resulting 
hyperplane. This algorithm enhances the robustness of 
SVM. 
The (2) can be converted into its dual form by the La-
grange multiplier method: 
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The decision function is  
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Based on the above FSVM algorithm, other scholars also 
proposed various fuzzy SVM to deal with different spe-
cific problem. All of these methods are put forward for 
some uncertainty in practical problems, they are the im-
provement and perfection of traditional SVM. 

2.2. Multiple kernel learning 
There are several kernel functions successfully used in 
the literature, such as the linear kernel, the polynomial 
kernel, and the Gaussian kernel. These different kernels 
may correspond to using different notions of similarity. 
Selecting the kernel function and its parameters is an 
important issue in SVM. However, there is not a general 
method for this work. Generally, a cross-validation pro-
cedure is used to choose kernel function, which is high 
computational complexity. In recent years, multiple ker-
nel learning (MKL) methods have been proposed. MKL 
combines multiple kernel functions to replace a single 
kernel function its corresponding parameters. 
In Multiple kernel support vector machine (MKSVM), 
combination of kernel and the calculation of weight is 
mainly considered. At present, the combination of kernel 
functions can be divided into the following three types: 
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 Linear combination methods [19] are the most widely 
used ways currently and have two fundamental catego-
ries: unweighted sum (such as the sum of simple kernel 
functions) and weighted sum, the formula is as follows: 

( ) ( )
1

, ,
P

m m
i j m m i j

m
k x x k x xη η

=

= ∑                       (8) 

where η  is weight of the kernel, and η  is set to 1 in the 
sum of simple single kernel functions, p  is the number 
of kernel functions. 
Nonlinear combination methods [20], such as multiplica-
tion, power, and exponentiation, the multiplication of the 
formula is as follows: 
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 Data-dependent combination methods [17], this method 
will be assigned a specific weight for each sample, by 
which the local distribution of data can be known. There-
fore, different data regions have different combination of 
kernels. 
The calculation methods of weight coefficients include 
five categories: fixed rules [18], heuristic approaches 
[21], optimization approaches [22], Bayesian approaches 
[17] and boosting approaches [23]. 
It is worth noting that the conclusion of section 2.1 is still 
valid if we substitute ( ),i jk x xη  for ( , )i jk x x . And the 
decision function is changed to 

( ) ( )
1
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i

f x y k x x bηα
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3. Fuzzy Rough Set Membership based 
Fuzzy Multiple Kernel Support Vector Ma-
chine 
Aiming at the difficulties in kernel selection and the sen-
sitivity to noise, this paper introduces the sample mem-
bership degree obtained by fuzzy rough set method to 
multiple kernel support vector machine, and proposes 
fuzzy rough set membership based fuzzy multiple kernel 
support vector machine (FMKSVM). 
Rough set (RS) was originally proposed by Pawlak [24] 
as a mathematical approach to handle uncertainty in data 

analysis. However, RS can only deal with databases with 
symbolic values. In order to handle databases with real 
number values, RS and fuzzy sets are combined together 
and so fuzzy rough sets (FRS) are derived by Dubois and 
Prade [25,26]. Since then, FRS have a fast development 
[27-32]. FRS has already been successfully applied to 
many real fields [33-35]. In this paper, we use lower ap-
proximation operator of Gaussian kernel based FRS as 
membership [36,37]. For x A∈ , 'inf x As ∉=  

( )( )2
1 , 'k x x− . Where s  is the membership that x  

belongs to A , and ( , ')k x x  is Gaussian Kernel. 
Unweighted linear combination is adopted in this paper. 
The optimization problem of FMKSVM is changed from 
(5) to  
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With the introduction of Lagrange multiplier, the dual 
problem can be transformed from (5) to: 
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The decision function ( ) ( )
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is obtained. 

4. Experimental Simulation 
The UCI database, a database used by the University of 
California at Irvine for machine learning, is a commonly 
used standard test data set. In order to verify the feasibili-
ty and effectiveness of the proposed method, 7 data sets 
are selected in the UCI database, as shown in Table 1. 
Since this article only considers the two-class classifica-
tion problem, the class 2 and 3 are considered as a class 
for the wine data set. 

Table 1. Data Information 
Number Dataset name Number of samples Number of attributes Number of categories 

1 breastcancer 683 10 2 
2 bupa 345 7 2 
3 ionosphere 351 34 2 
4 pima 768 9 2 
5 sonar 208 61 2 
6 wdbc 569 31 2 
7 wine 178 14 3 

 
Experiments run on a PC (CPU: 2.60GHz memory 
4.00GB), the operating system is Windows 8.1, and the 
experimental tool is Matlab R2014b. In the experiment, 

all data are normalized. The kernel function uses poly-
nomial kernel and Gaussian kernel. From the comparison 
of experimental results, the results are better in most cas-
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es when the two kernel parameters are 2, as shown in 
Figure 1. So the parameters of the two kernel functions 
are set to 2. Given the penalty factor 100=C . The ex-
periment compares the classification performance of 
fuzzy rough set membership based multiple kernel fuzzy 

support vector machine (MFSVM) and classical support 
vector machine (SVM), fuzzy support vector machine 
(FSVM) and multiple kernel support vector machine 
(MSVM). The 10 fold cross validation method were used 
in the experiment. 

Figure 1. Classification Accuracies of Sonar Versus the Values of the Kernel Parameter 
 
The results of the experiment are shown in Table 2. It can 
be seen that the FMKSVM method proposed in this ar-
ticle has higher classification accuracy on most databases. 
This also validates the effectiveness of the method. 
To further verify the performance of proposed FMKSVM 
in noisy environments, then we randomly select some of 
the cases in all seven databases to change their class la-
bels. Table 3 and table 4 are the results of the test accura-
cy of the 4 algorithms when the noise ratio is 10% and 
30% respectively. 
From the experimental results, it can be seen that the 
classification accuracy of FMKSVM method in 6 data-

bases is higher than that of the other three methods when 
10% noise is added. On sonar, FMKSVM and FSVM 
have the same and the highest classification accuracy. 
The FMKSVM has the highest classification accuracy on 
all databases although the classification accuracy of the 
Table 4 methods is relatively lower than that of Table 3 
at a noise ratio of 30%. This result further verifies that 
the proposed FMKSVM not only avoids the problem of 
kernel selection, but also has strong anti-noise capability. 
Thus, FMKSVM is not only feasible, but also has a wider 
range of applications. 

 
Table 2.  Comparison of Classification Accuracy without Noise 

Number Dataset Test accuracy(%) 
SVM FSVM MKVM FMKSVM 

1 breastcancer 94.60 95.47 94.75 95.47 
2 bupa 72.62 71.29 72.90 71.86 
3 ionosphere 87.48 88.33 87.77 89.18 
4 pima 76.03 76.29 77.06 76.82 
5 sonar 86.99 86.99 87.27 87.27 
6 wdbc 96.14 97.54 96.31 97.72 
7 wine 96.67 97.78 96.67 97.78 

 
Table 3.  Comparison of Classification Accuracy with 10% Noise 

Number Dataset Test accuracy(%) 
SVM FSVM MKVM FMKSVM 

1 breastcancer 87.40 87.55 86.55 87.87 
2 bupa 65.52 56.62 65.67 66.20 
3 ionosphere 75.48 79.75 74.91 80.61 
4 pima 71.49 71.87 71.73 72.90 
5 sonar 74.94 74.94 75.41 75.41 
6 wdbc 82.95 84.54 84.36 86.82 
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7 wine 87.64 88.19 84.24 88.61 

 
Table 4.  Comparison of Classification Accuracy with 30% Noise 

Number Dataset Test accuracy(%) 
SVM FSVM MKVM FMKSVM 

1 breastcancer 68.53 68.38 68.82 69.55 
2 bupa 54.62 48.90 54.05 56.14 
3 ionosphere 60.67 59.53 60.67 62.68 
4 pima 58.97 59.75 59.64 61.57 
5 sonar 58.97 59.87 60.35 61.45 
6 wdbc 64.69 65.74 64.33 66.09 
7 wine 63.85 66.15 67.69 68.46 

 

4 . Conclusions 
This paper introduced fuzzy rough set membership to 
multiple kernel support vector machine, and FMKSVM 
was established. The problem of kernel selection is 
avoided, and enhanced robust to noise through 
FMKSVM. The experimental results show that this me-
thod combines the advantages of fuzzy support vector 
machines and multiple kernel learning, and improves the 
classification performance of FSVM. It could be interest-
ing to investigate how to improve the calculation of sam-
ple membership and weight of kernels for FMKSVM. 
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