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Abstract: Helmholtz equations are often used to characterize the acoustic, electromagnetic scattering, radia-
tion and vibration phenomena building, which is focused on how to solve by many scholars. It will be more 
difficult to solve Helmholtz equations with discontinuous wave number or singular source term. In this paper, 
the one-dimensional Helmholtz equation with source term is solved by using the high-order method devel-
oped in reference, it can not only keep the local conservation of physical quantity, but also get the desired or-
der. the effectiveness and feasibility of the scheme developed in the paper is demonstrated  by numerical ex-
amples. 
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1. Introduction 
In this paper, we consider the following one-dimensional 
Helmholtz equation 

2 2
2 2
02 2( ) ( ) ( )d E d Ek v z E f z or k E f z

dz dz
+ = + =  z D∈     (1) 

where the material coefficient ( )v z is assumed piecewise-
constant, where 0k is a wave number. min max[ , ]D Z Z=  is 

a domain.(Among has a jump across interface Γ  at the 
interval) For convenience, we will consider interface on 
the grid.   
The jumps are defined as the difference of the limiting 
values from two different sides of the interface, for ex-
ample, 

[ ] lim ( ) lim ( ) .z z z D z z D
E E z E z E E

+ −

+ −
=Γ →Γ ∈ →Γ ∈

= − = −              (2) 

Early scholars such as Kreiss and Oliger [5] did a lot of 
work has been on the wave propagation 
and also got four or six levels of high precision.Later, 
Tony [10] proposed a eight order accuracy compact differ-
ence scheme. But when the coefficient of only piecewise 
continuous or interface, to achieve high precision be-
comes more difficult.For dealing with interface, LeVeque 
and Zhang [11] for the first time put forward using the 
virtual point at the interfaces to construct the for-
mat.Subsequent papers included[1,2,6,7,8,9].These authors 
for interface problems are made very good results.G. 
Baruch, [3] people using finite volume method and finite 
difference method of one dimensional Helmholtz equa-
tion of the source term is zero and the coefficient of dis-
continuous high-order compact difference scheme is con-

structed, and they only solve the discontinuity of the grid 
point.Do this method presented in this paper, further im-
provement and construct the Helmholtz equation of one 
dimension with the singular source term in interface (in-
terface on the grid point and the interface fall outside the 
grid point) of high-order compact format and verify the 
effectiveness and feasibility of this method. 

2. Fourth-order Compact Scheme For The 
one-dimensional Helmholtz Equation 
Let , , .a b D a b∈ <  We integrate (1) between the points 
a  and b  with respect to z : 

2
0

( ) ( ) ( ) ( ) .
b b

a a

dE b dE a k v z Edz f z dz
dz dz

− + =∫ ∫                (3) 

(3) can be interpreted as the integral conservation law 
that corresponds to (1) for sufficiently smooth solutions, 
the two formulations are equivalent, see[1].  
   Without loss of generality, we consider the interval 

min max[ , ]D Z Z= . First we generate a mesh: 
max min

min ( 1) , , 1, , .
1m

Z Zz Z m h where h m M
M

−
= + − = =

−
K

is the spatial mesh size. In addition, for the material 
( )v z is a piecewise constant coefficient, so in between 

each district can be expressed as  
1
2

1( ) , ( , ).m mmv z v z z z ++= ∈  1
2

1( ) , ( , ).m mmv z v z z z−−= ∈  

We approximate the Helmholtz equation on a uniform 
grid with size h  by applying the integral relation (3) 
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between the midpoints of every two neighboring cells, 
i.e., for  1 1

2 2
[ , ] [ , ], 1, 2, , .m ma b z z m M− += = K  

Then, 
1
2 1 1

2 2

1 1
2 21

2

2
0 ( ) ( ) .

m
m m

m m
m

z
z z

z z
z

dE k v z Edz f z dz
dz

+
+ +

− −
−

+ =∫ ∫                     (4) 

Because the material coefficient ( )v z  has a finite jump 
across interface mz on the grid point, so that on the type 
can be written as: 

1
2 1

2
1 1
2 21

21
2

1
2

1
2

2 2
0 0

( ) ( ) .

m m
m m

mm
mm

m m

mm

z z
z z

m mz z
z z

z z

z z

dE dE k v Edz k v Edz
dz dz

f z dz f z dz

+
+

−
−

+

−

− ++ + +

= +

∫ ∫

∫ ∫
   (5) 

The differential equation (1) inside the grid cells can be 
used to evaluate the one-sided second derivatives at the 
grid nodes as follows: 

1
2

1
2

( 1)

2
2
02

2
2

( 1) 0 1 12

m

m

def

m m mm
z z

def

m m mm
z z

d EE k v E f
dz

d EE k v E f
dz

+

+ −

+ + ++
=

+ − + ++
=

′′ = = − +

′′ = = − +

                (6a) 

1
2

1
2

( 1)

2
2
02

2
2

( 1) 0 1 12

m

m

def

m m mm
z z

def

m m mm
z z

d EE k v E f
dz

d EE k v E f
dz

−

− +

− − −−
=

− + − −−
=

′′ = = − +

′′ = = − +

               (6b) 

We use formulae (6) to approximate each of the four 
terms on the left-hand side of (5) with fourth-order accu-
racy. 
To approximate the fluxes 1

2mE ±
′  in (5), we use the Taylor 

expansion: 

1 1
2 2

2
(3) 41 ( ).

24
m m

mm

E E hE E O h
h

+
++

−′ = − +                        (7a) 

1 1
2 2

2
(3) 41 ( ).

24
m m

mm

E E hE E O h
h

−
−−

−′ = − +                        (7b) 

Respectively weighted average and derivation for (6a ) 
and  (6b ): 

1 1 1
2 2 2

1 1 1
2 2 2

(3) 2
0 1

(3) 2
0 1

1 ( ),
2
1 ( ).
2

m mm mm

m mm mm

E k v E f f

E k v E f f

+ ++ ++

− −− −−

′ ′ ′= − + +

′ ′ ′= − + +
                         (8) 

We obtain 
1
2

1
2

1
2

1
2

22 2
0 41

1

22 2
0 41

1

( )
1 ( )

48 48 24

( )
1 ( )

48 48 24

mm m
m mm

mm m
m mm

v hkE E h hE f f O h
h

v hkE E h hE f f O h
h

++
+ ++

−−
− −−

  −  ′ ′ ′= − − − +      
  −  ′ ′ ′= − − − +      

 

(9) 
Put them together, (5) can be described as 

1
12
2

1
2

1
2

22 2
01

1

22 2
01

1

4

( )
1

48 48 24

( )
1

48 48 24

( ) ( )

m m

mm

z z
mm m

m m
z z

mm m
m m

m m

v hkdE dE E E h hf f
hdz dz

v hkE E h hf f
h

E E O h

+

−

++
+ +

−−
− −

+ −

  −  ′ ′+ = − − −      

  −  ′ ′− − − −      
′ ′− − +

 

(10) 
To approximate the two integral terms in (5), we use cu-
bic interpolating polynomials and approximate the inte-
grand ( )E z  with fourth-order accuracy. 
Lemma 2.1[1]  Let 6

1( ) [ , ].m mE z C z z +∈  Given its values 

1{ , }m mE E + , as well as the values of its one-sided second 
derivatives ( 1){ , }m mE E+ + −′′ ′′ , we can approximate 

( )E z with fourth-order accuracy： 
4

3( ) ( ) ( ), [0,1]mE z h P O hζ ζ ζ+ = + ∈                    (11a) 
using the cubic Hermite-Birkhoff  polynomial: 

2 2 2 2
3 3

3 1 ( 1) ( 1)( ) ( )(1 ) (1 ) ( )
6 6 6 6m m m m m m
h h h hP E E E E E Eζ ζ ζ ζ ζ+ + + + − + −′′ ′′ ′′ ′′= − − + − + − +

(11b) 
the polynomial 3 ( )P ζ  is unique. 
Substituted（6a）into（11a），the fourth scheme can 
be proposed at 1[ , ]m mz z +  for ( )E z  

1 1
2 2

1 1
2 2

2 2 2 2
30 0

2 2 2 2
3 40 0

1 1 1 1

( ) ( )( ) 1 (1 ) (1 )
6 6 6 6

( ) ( )1 ( )
6 6 6 6

m m m m mm m

m m m mm m

hk h hk hE z h v E f v E f

hk h hk hv E f v E f O h

ζ ζ ζ

ζ ζ

+ + + ++ +

+ + + ++ +

    
+ = + − − − − −    

    
    

+ + − − − +    
    

(12) 
Substituted (12) into the second integral term of (5), we 
have 

1
2

1 1
2 2

2 2
0 0

1

3 3
5

1

3 ( ) ( )1 1
8 16 8 48

3 7 ( ).
128 384

m

m

z

m mm mz

m m

h hk h hkEdz v E v E

h hf f O h

+

+ ++ +

+ +

   
= + + +   

   

− − +

∫
 

(13) 
In the same way, the first integral term in (5) is follow-
ing： 

1 1
2 21

2

2 2
0 0

1

3 3
5

1

3 ( ) ( )1 1
8 16 8 48

3 7 ( ).
128 384

m

m

z

m mm mz

m m

h hk h hkEdz v E v E

h hf f O h

−
− −− −

− −

   
= + + +   

   

− − +

∫
 

(14) 
Put all terms of （5） together , the fourth scheme is 

1 11 1 2 2 [ ] .m m m m ma E c E c E a E E g− − + + ′+ + + − =                (15) 
here 

2
2 2 4

2
1 71 ( )1 1

24 8 384
hka k h k

h
−

− −

 
= − + + 

 
                 (16) 
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( ) ( )
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2
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2 2 4

2

2
2 2 4
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2

1

3 31 ( )1 1
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3 31 ( )2 1
24 8 128

1 71 ( )2 1
24 8 384

( ) ( )1 1
24 2448 48

7( ) 3( )
384

m m m m m

m

hkc k h k
h

hkc k h k
h

hka k h k
h

h hhk hkg f f f f

hk hkf

−
− −

+
+ +

+
+ +

+ −
+ + − −

− −
−

 
= − − + + 

 
 

= − − + + 
 

 
= − + + 

 
   ′ ′ ′ ′= + − − + −   
   

+ +

1 1
2 2

2 2 2

1
3( ) 7( )

128 128 384
( ) ( )

m m m

m mm m

hk hkf f f

F F F F

+ +
− + +

− +− +

+ +

+ − + −

(17) 
1
2

1 1
2 21

2

( ) , ( )m m

mm

z z

m mm mz z
F F f z dz F F f z dz+

−
− +− +− = − =∫ ∫            (18) 

2 2
0k k v=                                                   (19) 

[ ] ( ),[ ] ( )m m m mE E E E E E+ − + −′ ′ ′= − = −                           (20) 
For regular point, the fourth scheme is following 

1 1 1 .m m m maE bE aE g− ++ + =                                (21) 
Here 

( ) 1 1
2 2

2
2 2 4

2

2
2 2 4

2

22

1 1 1 1

1 71 ( )1
24 8 384

3 32 ( )1
24 4 64

( ) 7 7( )1 1 ( 3 ) ( )
2448 64 6 6m m m m m m m m

hka k h k
h

hkb k h k
h

h hkhkg f f f f f F F+ − − − + −

 
= − + + 

 
 

= − − + + 
 

 ′ ′= − − + + + + − 
 

(22) 

3. Numerical Experiments 
In this section, we present four numerical examples that 
we have the exact solution to show the convergence of 
our fourth order compact schemes for solving the Helm-
holtz equation with a straight interface. All computations 
are done using a Dell Desktop or a notebook computer. 
Most of computations are done within seconds or a few 
minutes depending the mesh size. A Dirichlet boundary 
condition is used. The error is measured in the 

1, , 1
max ( )m mm n

L E z E∞ = +
= −

K
norm for all the grid points and 

the convergence order is estimated using 
1 2 1 2log( / ) / log( / )L h L h h h∞ ∞  as a common practice in 

the literature.  
Example 1 In this example, we use the exact solution 

( ) sin( )E z zπ= . The wave number has a finite jump 
across 0z = , so does ( )f z  within the domain 

[ 1,1]D = − which includes two parts [ 1, 0 ]D− = −  and  
(0,1].D+ = The source term is given by 

2 2

2 2

( )sin( ), ,
( )

( )sin( ), .
k z z D

f z
k z z D

π π
π π

−
−

+
+

 − + ∈= 
− + ∈

                     (23) 

 
Table 1. A grid refinement analysis for Example 1 using the fourth order compact  scheme with different wave numbers. 

fourth order convergence is confirmed 
 2 21, 5k k− += =  2 21, 30k k− += =  

N Error              Order Error               Order 
8 

16 
32 
64 

128 
256 

0.0067 
4.2991e -004        3.9621 
2.7256e -005        3.9794 
1.7066e -006        3.9971 
1.0671e -007        3.9994 
6.6696e -009        4.0000 

0.0150 
9.5710e -004        3.9701 
6.2632e -005        3.9337 
3.9343e -006        3.9927 
2.4643e -007        3.9969 
1.5411e -008        3.9991 

 
In Table 1, we show a grid refinement analysis with dif-
ferent wave numbers. In the second-third column, we 
show the results with  relatively small wave number 

2 1k− =  and 2 5k+ = ; in the fourth-fifth column, we show 
the results with medium size wave number  2 1k− =  and 

2 30k+ = . In both cases, fourth order convergence can be 
clearly observed. 
Example 2   We consider the following problem: the in-
terface is the point 0z =  within the domain [ 1,1]D = −  
which includes two parts [ 1, 0 ]D− = −  and  (0,1].D+ =  
 the source item is given as 

2 1 1
2 2

2 1 1
2 2

( 2)sin( )cos( ) 2cos( )sin( ), ,
( )

( 2)sin( )cos( ) 2cos( )sin( ), .
k z z z z z D

f z
k z z z z z D

−
−

+
+

 − − − − ∈= 
− + − + ∈

(24) 
The exact solution of the problem is 

1
2
1
2

sin( )cos( ), ,
( )

sin( )cos( ), .
z z z D

E z
z z z D

−

+

 − ∈= 
+ ∈

                                (25) 

Example 3  We consider the following problem: the in-
terface is the point  0z = within the domain [ 1,1]D = −  
which includes two parts [ 1, 0 ]D− = −  and  (0,1].D+ =  
 the source item is given as 

2 2

2 2

( 1)cos( ) / 2, ,
( )

( 1)cos( ) / 2, .
k z k z D

f z
k z k z D

−
− −

+
+ +

 − − ∈= 
− − ∈

                  (26) 
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Table 2. A grid refinement analysis for Example 2 using the fourth order compact  scheme with different wave numbers. 
fourth order convergence is confirmed 

 5,1 22 == +− kk  30,1 22 == +− kk  
N Error              Order Error               Order 
8 
16 
32 
64 

128 
256 

8.6281e -004 
5.6255e -005        3.9390 
3.5385e -006        3.9908 
2.2181e -007        3.9957 
1.3869e -008        3.9994 
8.6667e -010        4.0002 

0.0016 
1.0033e -004        3.9952 
6.3711e -006        3.9725 
4.0284e -007        3.9878 
2.5198e -008        3.9988 
1.5762e -009        3.9988 

 
The exact solution of the problem is 

1cos( ) , ,
2( )
1cos( ) , .
2

z z D
E z

z z D

−

+

 − ∈= 
 + ∈


                                   (27) 

The jump condition of the problem is [ ] 1E = , '[ ] 0E = . 
Unlike Example 2, ( )E z is discontinuous at the interface 
in this example. 

 
Table 3. A grid refinement analysis for Example 3 using the fourth order compact  scheme with different wave numbers. 

fourth order convergence is confirmed 

 5,1 22 == +− kk  30,1 22 == +− kk  
N Error              Order Error               Order 
8 

16 
32 
64 

128 
256 

2.0512e -004 
1.3030e -005        3.9766 
8.2297e -007        3.9849 
5.1448e -008        3.9985 
3.2180e -009        4.0000 
1.9702e -010        4.0298 

7.5973e -005 
5.0548e -006        3.9098 
3.2301e -007        3.9680 
2.0380e -008        3.9864 
1.2757e -009        3.9978 
7.9784e -011        3.9990 

 
In Table 3, we show a grid refinement analysis with dif-
ferent wave numbers. In the second-third column, we 
show the results with relatively small wave number 

2 1k− =  and 2 5k+ = ; in the fourth-fifth column, we show 

the results with medium size wave number 2 1k− =  and 
2 30k+ = . In both cases, fourth order convergence can be 

clearly confirmed. 

 
Table 4. A grid refinement analysis for Example 4 using the fourth order compact  scheme with different wave numbers. 

fourth order convergence is confirmed. 

 5,1 22 == +− kk  30,1 22 == +− kk  
N Error              Order Error               Order 
8 

16 
32 
64 

128 
256 

1.1471e -004 
7.5972e -006        3.9164 
4.8146e -007        3.9800 
3.0195e -008        3.9950 
1.8863e -009        4.0007 
1.0531e -010        4.1628 

0.0011 
6.5707e-005        4.0653 
4.2553e-006        3.9487 
2.6626e-007        3.9984 
1.6662e-008        3.9982 
1.0387e-009        4.0037 

 
Example 4  We consider the following problem,  the in-
terface is the point 0z =  within the domain  [ 1,1]D = −  
which includes two parts [ 1, 0 ]D− = −  and  (0,1].D+ =  
the source item is given as 

2 4

2 4

1( 1) cos( ) 2sin( ) ( ), ,
2( )
1( 1) cos( ) 2sin( ) ( ), .
2

k z z z k z z D
f z

k z z z k z z D

−
− −

+
+ +

 − − − − ∈= 
 − − + + ∈


  (28) 

The exact solution of the problem is 
2

2

1cos( ) ( ), ,
2( )
1cos( ) ( ), .
2

z z k z z D
E z

z z k z z D

−
−

+
+

 − − ∈= 
 + + ∈
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The jump condition of the problem is  
2 2 2 21[ ] ( ), [ ] .

2
E k k E k k+ − + −′= − = +  

4. Conclusions 
In this paper, the finite volume method in the literature 
on the basis of existing methods, the method was further 
improved, the one dimensional Helmholtz equation of 
wave number discrete fourth order accuracy difference 
scheme. Numerical experiment results show that the for-
mat can be up to four order accuracy. 
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